
DD2442 Proof Complexity: Problem Set 2

Due: Monday October 31, 2016, at 23:59 AoE. Submit your solutions as a PDF �le by
e-mail to jakobn at kth dot se with the subject line Problem set 2: 〈your full name〉.
Name the PDF �le PS2_〈YourFullName〉.pdf with your name written in CamelCase without
blanks and in ASCII without national characters. State your name and e-mail address at the
very top of the �rst page. Solutions should be written in LATEX or some other math-aware
typesetting system with reasonable margins on all sides (at least 2.5 cm). Please try to be
precise and to the point in your solutions and refrain from vague statements. Write so that a

fellow student of yours can read, understand, and verify your solutions. In addition to what
is stated below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed�and indeed,
encouraged�but you should write down your own solutions individually and understand all
aspects of them fully. You should also acknowledge any collaboration. State at the very top
of the �rst page of your problem set solutions if you have been collaborating with someone
and if so with whom. Note that collaboration is on a per problem set basis, so you should

not discuss di�erent problems on the same problem set with di�erent people.

Reference material: Some of the problems are �classic� and hence it might be easy to �nd
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes should be fair game, though, unless you are speci�cally asked to show
something that we claimed without proof in class. All de�nitions should be as given in class
and cannot be substituted by versions from other sources. It is hard to pin down 100%
watertight formal rules on what all of this means�when in doubt, ask the main instructor.
About the problems: Some of the problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. On the contrary, you can chooose to solve
just a subset of the problems and still get a top grade. A total score of around 80 points
should be enough for grade E, 110 points for grade D, 140 points for grade C, 170 points for
grade B, and 200 points for grade A on this problem set. Any corrections or clari�cations
will be given at piazza.com/kth.se/fall2016/dd2442/ and any revised versions will be
posted on the course webpage www.csc.kth.se/DD2442/semteo16/.

1 (10 p) Suppose that for a proof system P we can prove a lower bound for the length of refutations

of uniformly randomly sampled 3-XOR formulas. Prove that this implies at least as good a lower

bound in P for the length of refutations of uniformly randomly sampled 3-CNF formulas.

Hint: Note that you only know that one kind of random formulas sampled according to one

distribution are hard, and now you want to show that another kind of formulas sampled from a

slightly di�erent distribution are also hard. Please make sure to get the formal argument correct.

2 (10 p) Prove for DNF formulas G1, . . . , Gs, H that if G1, . . . , Gs strongly imply H in the sense

of Lecture 7, then G1, . . . , Gs imply H in the usual sense (i.e., G1 ∧ · · · ∧Gs � H). Then show

that the opposite direction does not hold. Please make sure to motivate your line of reasoning.
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3 (20 p) The purpose of this problem is to make more formal the claim that �restrictions preserve

refutations� (which will be true for all proof systems we encounter in this course). In what follows

below, let ρ : Vars(F )→ {0, 1, ∗} denote a restriction, i.e., a partial assignment, to the variables

of an unsatis�able CNF formula F .

3a (10 p) Prove that if π is a d-DNF resolution refutation of F , then π�ρ can easily be made

into a refutation of F �ρ in at most the same length. Is it in fact the case that π �ρ is

already a syntactically legal d-DNF resolution refutation even without any modi�cation?

Here π�ρ is de�ned so that any proof line containing a d-DNF formula with a satis�ed term

is removed, and in all other lines falsi�ed terms are removed, after which satis�ed literals

are removed.

3b (10 p) Prove that if π is a cutting planes refutation of F , then π�ρ can easily be made

into a refutation of F �ρ in at most the same length. Is it in fact the case that π �ρ
is a legal cutting planes refutation even without any modi�cation? Here π �ρ is de�ned

so that in a linear inequality
∑

iAixi ≥ B the values ρ(xi) ∈ {0, 1} are substituted for

assigned variables xi, after which all constants are moved to the right-hand side to yield∑
i,ρ(xi)=∗Aixi ≥ B −

∑
i,ρ(xi)=1Ai.

4 (30 p) In the �rst lecture, we brie�y discussed the proof system polynomial calculus. The purpose

of this problem is to establish that polynomial calculus is an implicationally complete proof

system for CNF formulas and to compare it to resolution. Recall that if we write any clause C
as C = C+ ∨ C−, where C+ contains all positive (unnegated) literals of C and C− contains all

negative (negated) literals, then in polynomial calculus we translate the axiom clauses C ∈ F to

polynomials p(C) =
∏
x∈C+ x ·

∏
y∈C−(1− y) expanded out as linear combinations of monomials

in some (�xed) �eld F. We also have Boolean axioms x2 − x for all variables x. The size of a

polynomial is the number of monomials when the polynomial is written as a linear combination

of monomials with coe�cients in F, and the size of a polynomial calculus refutation (i.e., a

derivation of the multiplicative identity 1 in the �eld F) is the sum of the sizes of all polynomials

in it (including any Boolean axioms used).

4a (20 p) Show that if a resolution refutation uses the resolution rule

B ∨ x C ∨ x
B ∨ C ,

then polynomial calculus can derive p(B ∨C) from p(B ∨ x) and p(C ∨ x). Explain why it

follows that polynomial calculus can refute any unsatis�able CNF formula F .

4b (10 p) Is it true that the simulation outlined in Problem 4a shows that in fact polynomial

calculus polynomially simulates resolution? Fill in the necessary details to prove that this

is so, or explain why this fails to be a polynomial simulation.
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5 (30 p) In Lecture 8 we saw the theorem that if a d-DNF resolution refutation π = (H1, H2, . . . ,HL)
of a h-CNF formula F has the property that all lines Hi can be strongly represented by deci-

sion trees of height h, then there is a resolution refutation of F where all clauses have width

at most 2h. We proved this by arguing that a decision tree of height h can be represented by

a CNF formula of width h, and then showing that the sets of CNF formulas corresponding to

each Hi could be stringed together into a resolution refutation with a bit of extra work.

It is a natural question whether we really need the decision trees here, or whether they just

happen to be a by-product of the switching lemma used for d-DNF resolution and we would be

equally �ne in this particular part of our overall lower bound construction if we only knew that

the lines in the d-DNF resolution refutation could be represented e�ciently as CNF formulas.

Your task is to shed light on this.

To formalize the question we want to understand, suppose that F is a h-CNF formula such

that there is a d-DNF resolution refutation π = (H1, H2, . . . ,HL) of F where each line Hi can

be represented as a h-CNF formula. Under this assumption, can the proof we did in class be

adapted to show that F has a resolution refutation in width O(h)?
If your answer is yes, please explain clearly how to modify the proof given in class to establish

this claim. You do not need to give all the details, but a fellow student of yours who understood

the proof of the simulation of decision trees by resolution should be able to piece together a proof

of the new claim from your description. If your answer is no, then you do not necessarily have

to show unconditionally that the claim is false, but you need to argue clearly which parts of the

proof seem challenging or impossible to extend to the new setting and why.

6 (30 p) Suppose that A(p,q) ∧ B(p, r) is an unsatis�able CNF formula over disjoint sets of

variables p,q, r. In class we showed monotone feasible interpolation theorems �rst in the case

when all the p-variables appear only positively in A(p,q) for resolution, and then in the case

when all the p-variables appear only negatively in B(p, r) for cutting planes. In this problem

we want you do the proof of the monotone interpolation theorems for the cases that were not

covered in class.

6a (15 p) Under the assumption that p-variables appear only negatively in B(p, r), show that

if A(p,q) ∧ B(p, r) has a resolution refutation of length L, then there exists a monotone

Boolean interpolating circuit I(p) of size O(L).

6b (15 p) Under the assumption that p-variables appear only positively in A(p,q), show that if

A(p,q)∧B(p, r) has a cutting planes refutation of length L, then there exists a monotone

real interpolating circuit I(p) of size O(nL), where n is the number of variables in the

formula.

Remark: Note that there is no need to reproduce the entire proofs covered in class�you can

assume that they are all known. Instead, just explain in a precise manner exactly which parts of

the proofs need to be modi�ed and how, and then motivate (potentially brie�y, but clearly and

to the point) why the modi�ed proofs work.
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7 (50 p) Let F =
∧m
i=1Ei be an XOR formula with linear equations Ei and letGF be the constraint-

variable incidence graph as de�ned in class (i.e., GF is a bipartite graph with left vertices labelled

by constraints, right vertices labelled by variables, and edges corresponding to variable occur-

rences in constraints). Let F ′ denote the canonical encoding of F as a CNF formula. The purpose

of this problem is to prove that if GF is an (r, c)-boundary expander for some c > 0, then F ′

requires refutation width W(F ′ `⊥) ≥ rc/2 in resolution.

7a (20 p) For any clause C, de�ne the complexity measure

µ(C) = min
{
|I| : I ⊆ [m],

∧
i∈IEi � C

}
to be the minimal size of any subset of linear equations {Ei | i ∈ I} ⊆ F such that any

assignment α that satis�es
∧
i∈I Ei must also satisfy C. Prove that µ(C) = 1 for any

clause C in the CNF formula F ′ encoding the XOR formula F and that µ(⊥) ≥ r.

7b (10 p) Prove that the measure µ is subadditive, i.e., that for any clause B ∨ C derived by

resolving clauses B ∨ x and C ∨ x it holds that µ(B ∨ C) ≤ µ(B ∨ x) + µ(C ∨ x). Then

show that this implies that every resolution refutation π : F ′ `⊥ must contain a clause D
such that r/2 ≤ µ(D) ≤ r.

7c (20 p) Prove that for any clause D such that µ(D) ≤ r it holds that W(D) ≥ c ·µ(D), and
use this to show that W(F ′ `⊥) ≥ cr/2.

8 (70 p) In our proofs of the length lower bounds for d-DNF refutations of PHP cn
n and random

3-XOR formulas we claimed that refutations of these formulas can be assumed to be in di�erent

kinds of normal form without loss of (too much) generality. The purpose of this problem is to

formalize and establish these claims.

8a (30 p) Prove that if the formula PHP cn
n has a d-DNF resolution refutation in length L, then

it also has a d-DNF resolution refutation in length 2L where all lines are in pigeon-normal

form. Recall that we say that a term t is in pigeon-normal form if it does not contain two

positive literals xi,j and xi′,j for i 6= i′, and that a DNF formula is in pigeon-normal form

if all terms in it are in pigeon-normal form.

8b (40 p) Let F =
∧∆n
i=1Ei be a 3-XOR formula with ∆n linear constraints Ei over n variables

and let F ′ be the canonical encoding of F in 3-CNF. Suppose that the constraint-variable
incidence graph GF is an (r, c)-boundary expander for some c > 1/2.

Prove that if F ′ has a d-DNF resolution refutation in length L for d ≤ min
{
r
4 , log n

}
,

then F ′ has a d-DNF resolution refutation in length L · nO(1) where all lines are in XOR-

normal form. We say that a term t is in XOR-normal form if t∧
∧
i∈supp(t)Ei is satis�able

(where we refer to the lecture notes for the de�nition of supp(t)), and that a DNF formula

is in XOR-normal form if all its terms are in XOR-normal form.

Hint: It might be helpful to recall that any literal a is locally consistent since supp(a) = ∅.
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9 (90+ p) Given an undirected graph G = (V,E) and a parameter k ∈ N+, we can de�ne a formula

Clique(G, k) that encodes the claim that G has a k-clique in the following way. The variables

of Clique(G, k) are xi,v for i ∈ [k] and v ∈ V , where the intended meaning is that xi,v is true if
vertex v is the ith member of the k-clique, and the clauses are∨

v∈V xi,v i ∈ [k]; (1)

xi,u ∨ xi,v i ∈ [k] and u, v ∈ V , u 6= v; (2)

xi,u ∨ xj,v i, j ∈ [k], i 6= j, and u, v ∈ V , (u, v) /∈ E; (3)

where clauses (1) and (2) say that the ith member of the clique is some unique vertex vi ∈ V
for i ∈ [k] and clauses (3) say that two vertices u and v cannot both be members of the clique

if there is no edge between them. (Note that in contrast to the clique-colouring formulas, here

there is a concrete graph G hardcoded into the formula by the clauses of type (3)).

A reasonably well-established hypothesis in computational complexity theory is that for any

constant k ∈ N+ deciding whether a graph G = (V,E) with |V | = n contains a k-clique cannot
be done faster than nΩ(k) (i.e., there is no fundamentally better way than to exhaustively check

all
(
n
k

)
k-clique candidates). It is an interesting question whether such a lower bound can be

established unconditionally for weak computational models such as con�ict-driven clause learning

(CDCL) SAT solvers and the resolution proof system in which these solvers search for proofs,

and this is the topic of this problem.

Hint: In what follows, you are encouraged to use the fact mentioned in class that general

resolution is equivalent to Pudlák's Prosecutor-Defendant game. You can also use the equivalence

proven in problem set 1 between tree-like resolution and decision trees. In this context it might

be helpful to think of the decision tree as a Prosecutor who never forgets anything and the values

of the queries as Defendant answers (although if you want to claim a formal equivalence you need

to prove it).

9a (40 p) Consider formulas Clique(Gn, k) de�ned over complete (k − 1)-partite graphs, i.e.,
graphs over n = (k−1)n′ vertices with V = V1

.
∪V2

.
∪ · · ·

.
∪Vk−1 for |Vi| = n′ and with edge

set E =
⋃

1≤i<j≤k−1{(vi, vj) | vi ∈ Vi, vj ∈ Vj}. A moment of thought reveals that such

graphs do not contain k-cliques. Prove that tree-like resolution proofs require length nΩ(k)

to establish this fact.

9b (50 p) Prove that formulas Clique(Gn, k) de�ned over complete (k − 1)-partite graphs are
easy to refute for general resolution in that they only require refutations of length nO(1).

9c (300+ p) Open problem: Find some family of graphs {Gn}∞n=1 on n vertices that do

not contain k-cliques but are such that the refutation length of formulas Clique(Gn, k) in
general resolution grows like nΩ(k), or indeed like nωk(1) for any arbitrarily slowly growing

but unbounded function ωk(1) of k. If it helps, you can also omit the clauses (2) from the

formulas (removing these clauses can only make the formulas harder to refute, although it

is clear that they are still unsatis�able).
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