First lecture - recap

Practicalities
Discussion about computation and computational complexity
Basic definitions
Computational model

TURING MACHINE
A. Set of states
Σ: finite-size alphabet (think \{0,1\})

Tapes
Read-only input tape
Write-only output tape
Read-write work tapes

Used to solve DECISION PROBLEMS

\[f : \Sigma^* \rightarrow \{\text{yes, no}\} \]

- Is there a path from s to t in graph G?
- Is the Boolean formula \(F \) satisfiable?

Solve decision problem: DECIDE LANGUAGE

\[f : \Sigma^* \rightarrow \{\text{yes, no}\} \quad \Rightarrow \quad L = \{ x \in \Sigma^* | f(x) = \text{yes} \} \]

There is a UNIVERSAL TURING MACHINE that can simulate any other TM efficiently given its description as a string.

It is undecidable whether given TM M halts on input x.

What happened in the proof?
Diagonalization

Input: Box (M, x) does M halt on x?

Using assumption that halting problem can be decided.

Build a TM that disagrees with table in diagonal
⇒ cannot be one of TMs in the table

Hence assumption must be wrong.

Another example: Given set of polynomial equations with integer coefficients, do the equations have an integer solution?

Even if computable, might be infeasible in practice. Classify how hard various functions are.

Complexity class: set of functions that can be computed within given resource bounds.

Def: T: N → N function.

A language L is in $\text{DTIME}(T(n))$ if there is a TM that runs in time $cT(n)$ for some constant c and decides L.

Def: $P = \bigcup_{k=1}^{\infty} \text{DTIME}(n^k)$.
Note (a) P defined for decision problems
(b) Running time measured in # bits in input

Church–Turing Thesis

Every physically realizable computational device can be simulated by a Turing Machine.

Note a theorem – it couldn’t be, but consistent with what we currently know about nature

Strong / Extended Church–Turing Thesis

Anything efficiently computable on any device is efficiently computable by a TM (i.e., with polynomial overhead).

(Might not be true if quantum computers can be built)

So we think of P as capturing what is efficiently computable
Interlude

Given language / problem \(L_1 \),
would like to

a) give algorithm deciding \(L_1 \)

b) prove that no algorithm can do better than \(A \)

Many successes for (a).
Task (b) seems almost completely beyond reach! (Because it's hard — how can you prove that some totally weird algorithm out there can't do better)

What to do?

1. Restrict model, e.g. focusing on what "non-weird" algorithms do and prove that no such algorithm can do better

2. At least relatively how hard different problems are compared to each others via reductions

- sheds connections
- helps us to expand our intuition about what to expect
Reductions

L_1 reduces to L_2, $L_1 \leq L_2$, if there exists an efficient algorithm that computes the same function g s.t.

$$x \in L_1 \Rightarrow g(x) \in L_2$$

$$x \notin L_1 \Rightarrow g(x) \notin L_2$$

Possible use

Have efficient algorithm for L_2

Given new problem L_1,

Reduce L_1 to L_2 and solve it

Ex: Bipartite matching \leq max flow

Negative use

Believe that L_1 is hard

Given new problem L_2

Reduce L_1 to L_2

Shows that L_2 must be as hard as L_1
IS \(P \) A REASONABLE MODEL OF EFFICIENTLY SOLVABLE PROBLEMS?

Pros
- Compares well - efficient programs can call efficient subroutines and stay efficient
- Exponents of the polynomials in running times are often small
- Reasonable agreement with practice

Cons
- Worst-case scenario too strict - what if difficulty depends on some pathological instance never seen in practice?
 - Not clear what this means
 - Average or average-case complexity
- Polynomial time too slow - the small exponents we observe is because that's the kind of algorithms we can understand and discover
 - Also, huge data sets can make even quadratic or linear time infeasible
 - There is research into this
 - But \(P \) still relevant class

- What about other physical models that might
 (a) be continuous, not discrete
 - still need to measure, and to deal with noise
 (b) use randomness (say, stochastic models)
 - doesn't seem to matter
 (c) use quantum mechanics
 - jury is out...
Cons (continued)

- Decision problem framework is too limited
 - Yet, sometimes. But surprisingly often not. We'll see an example next lecture.

SUMMING UP SO FAR

TURING MACHINES GENERAL WAY TO MODELS COMPUTATION (ALTHOUGH WE DON'T WANT TO GET STUCK IN LOW-LEVEL DETAILS)

SOME NATURAL FUNCTIONS NOT COMPUTABLE AT ALL (HALTING PROBLEM)

IDENTIFY "EFFECTIVELY SOLVABLE" WITH COMPLEXITY CLASS P

ON BALANCE, SEEMS LIKE REASONABLE (AND SUCCESSFUL!) DEFINITION

NEXT ON THE AGENDA

NP, NP-COMPLETENESS, AND BEYOND (CHAPTER 2)
Solving vs. Verifying

Doing an exam requires coming up with solutions — can be hard.

Grading just involves verifying correctness — much easier (hopefully..., usually...)

Complexity class \(P \)

Efficiently solvable problems (in polynomial time)

Complexity class \(NP \)

Problems for which solutions can be verified efficiently.

DEF Language \(L \) is in \(NP \), if

\[\exists \text{ polynomial } p \text{ and poly-time TM } M \text{ (verifier) s.t.} \]

\[x \in L \iff \exists u \in \{0,1\}^p(\|x\|) \text{ s.t. } M(x,u) = 1 \]

\(u \) is a certificate or witness for \(x \)
1. Traveling Salesman
 Given n cities, $(\binom{n}{2})$ pairwise distances d_{ij}, length constraint k.
 Is there a tour visiting every city exactly once and having length $\leq k$?

2. Subset Sum
 Given n numbers A_1, \ldots, A_n and number T,
 is there a subset $S \subseteq \{A_1, \ldots, A_n\}$ s.t. $\sum_{i \in S} A_i = T$?

3. Linear Programming
 Given m linear inequalities $a_{i1}u_1 + a_{i2}u_2 + \ldots + a_{in}u_n \geq b_i, \ a_i, b_i \in \mathbb{Q}$, is there an assignment to the u_i satisfying all inequalities?

4. 0/1 Integer Programming
 Same as above, but assignments to u_i in $\{0, 1\}$.

5. Graph Isomorphism
 Given two graphs G_1, G_2, are they isomorphic? i.e., is there a bijection $\pi : V(G_1) \to V(G_2)$ s.t. $(u,v) \in E(G_1)$ iff $(\pi(u), \pi(v)) \in E(G_2)$?

6. Composite Numbers
 Given $N \in \mathbb{N}$, decide if N is composite (i.e., not a prime).
7. FACTORING
Given \(N, L, U \in \mathbb{N} \), does \(N \) have a prime factor \(p \) with \(L \leq p \leq U \\

8. CONNECTIVITY
Given graph \(G \) and vertices \(s, t \), are \(s \) and \(t \) connected in \(G \) \\

9. CNF UNSAT
Given a CNF formula \(F = \bigwedge_{i=1}^{m} C_i \) for clauses \(C_i \) on the form \(\bigvee x_i, \neg x_2, \neg x_3, v, x_4 \), does every truth value assignment fail to satisfy at least one clause? \\

1. TSP: witness: tour
 complexity: hardest problem in \(\text{NP} \), \(\text{NP} \)-complete \\
2. TSP: witness: subset
 complexity: \(\text{NP} \)-complete \\
3. TSP: witness: assignment
 complexity: worst-case \(\text{NP} \)-complete
 Khachiyan '79: \(\in \text{P} \)
 Karmaks '84: efficient \\
4. witness: assignment
 complexity: \(\text{NP} \)-complete \\
5. witness: bijection \(\text{NP} \)-complete
 - not believed to be in \(\text{P} \)
 - \(\text{NP} \)-complete \\
6. witness: factor
 known to be solvable with randomness
 \(\text{Miller '76, Karp '80} \)
 \(\text{in P! [AKS '04]} \)
Proposition 3 \(P \leq NP \leq \text{EXP} \)

Definition 2 \(\text{EXP} \) (or \(\text{EXPTIME} \)) = \(\bigcup_{c=1}^{\infty} \text{DTIME} \left(2^{n^c} \right) \)

Proof
- \(P \leq NP \): pick witnesses of length 0. Exponential many candidates.
- \(NP \leq \text{EXP} \): at most \(\text{exp} \) many witnesses, try all in poly-time per candidate.

Prop 2 is state-of-the-art (sadly).

One of the Millennium Problems: \(P \neq NP \)

Most (but not all) believe \(P \neq NP \).
Original definition of NP
uses nondeterminism (the "N" in "NP")

Nondeterministic TM
Each line in program has two variants
(TM has two transition functions)
At each step, TM arbitrarily chooses one
Think of it as flipping a "golden coin" that always comes up "the best way"

NTM accepts \(x \) if at least one possible
NDTM sequence of choices leads to accept,
otherwise rejects

NDTM/NTM runs in time \(T(n) \) if all possible
sequences of choices terminate within time \(T(n) \).

Aside: accept means either
(a) write 1 on output tape, or
(b) reach special state \(q \) accept

DEF \(L \) is in \(NTM \text{E}(T(n)) \) if \(\exists c > 0 \)
and \(c \cdot T(n) \)-time NDTM \(M \) such that
for every \(x \in \{0,1\}^* \)
\(x \in L \) iff \(M(x) = 1 \)
Lemma 5 \(NP = U_{c(n)} NTIME(n^c) \)

Proof

Need to prove

1. \(L \subseteq NP \Rightarrow L \subseteq U_{c(n)} NTIME(n^c) \)
2. \(L \subseteq NTIME(n^c) \Rightarrow L \subseteq NP \)

1. There is some witness. Let NDTM write down a witness nondeterministically, then verify (by running verifier for \(L \))
 - \(x \in L \Rightarrow \exists \text{ good witness } \Rightarrow \text{ accept} \)
 - \(x \notin L \Rightarrow \exists \text{ good witness } \Rightarrow \text{ reject} \)

 Runs in poly-time, since verifier poly-time and witness poly-length.

2. Let the witness be a good sequence of "golden coin tosses". Simulate NDTM with this sequence to check acceptance.

Wouldn't it be great to have an NDTM on your desk?

Not physically realizable (as far as we know)

But useful theoretical model, e.g. for exhaustive search
Efficient computation

Defined as deterministic polynomial time
Can be debated
But in the whole seems like fruitful definition

Church-Turing Thesis + extended versions

TM "universal model" of computation
Consistent with our knowledge so far

Reductions

Use to solve problems
- relate hardness of problems

NP

Problems with efficiently verifiable solutions

\[P \subseteq NP \subseteq EXP \]

Including widely believed to be strict

\[P \neq NP \]

The open problem of complexity theory

\(\cap \) in \(NP \) stands for "nondeterministic computation" - computation with "golden coinflips"