"Every NP statement has an exponentially long proof that can be locally tested by looking at just a constant number of bits."

This is off by an exponential in the proof size—we want a polynomial-size proof that can be checked with a logarithmic amount of randomness—but is still nontrivial.

THM 11.19 \(\text{NP} \leq \text{PCP}_{1/2}^2(\text{poly}(n), 1) \)

To prove this theorem, need to find redundant encoding of proofs/assignments that can be checked with very few queries.

Suppose we have string \(u \in \{0,1\}^n = \text{GF}(2)^n \). We can view \(u \) as a linear function

\[
\begin{align*}
 u & : \{0,1\}^n
 & \rightarrow \{0,1\}^n \\
 & x \mapsto u(x)
\end{align*}
\]

Encode \(u \) by writing down its function table

\[
\begin{array}{c|c}
 u(x) & x \in \{0,1\}^n
\end{array}
\]

string of length \(2^n \).
Identify $u = (u_1, \ldots, u_n) \in \{0,1\}^n$ with function

$$x \mapsto u \cdot x = \sum_{i=1}^n u_i \cdot x_i \pmod{2}$$

$WH : \{0,1\}^n \to \{0,1\}^{2^n}$ defined by

$$WH(u) = \{ u \cdot x \mid x \in \{0,1\}^n \}$$

How many different strings in $\{0,1\}^k \equiv 2^k$? Hence there are 2^{2^n} strings $f \in \{0,1\}^{2^n}$.

Every such f can be viewed as function table $f : \{0,1\}^n \to \{0,1\}$

Out of these 2^{2^n} functions/strings, only 2^n (a logarithmic number) are linear functions

So strings corresponding to $WH(u)$ for some $u \in \{0,1\}^n$ are very rare.

Refer to $WH(u)$ as codewords of the Walsh-Hadamard code.

An absolutely crucial fact is that any two codewords $WH(u)$, $WH(v)$, $u \neq v$, are very far from each other.
For \(f, g \in \{0, 1\}^k \) let
\[
\delta(f, g) = \Pr_{i \in [k]} [f_i \neq g_i] = \frac{1}{2^k} \left| \{ i \in [k] \mid f_i \neq g_i \} \right|
\]

Lemma For any \(u, v \in \{0, 1\}^n \), \(u \neq v \),
\[
\delta(\text{WH}(u), \text{WH}(v)) = \frac{1}{2}
\]
that is, any two codewords differ in exactly half of the coordinates.

Can also be phrased as follows:

Random Subsum Principle
If for \(u, v \in \{0, 1\}^n \) it holds that \(u \neq v \),
then for exactly half of all strings \(x \in \{0, 1\}^n \) it holds that
\[
u \cdot x \neq v \cdot x
\]

Aside about notation:
- Arora-Barak write \(u \circ v \)
- I will try to consistently write \(u \cdot v \)
- Also fairly common to write \(\langle u, v \rangle \)
 Slightly misleading since this is not an inner product (why?) but has many properties of an inner product.
Suppose we are given a function $f : \{0,1\}^n \to \{0,1\}^n$ (i.e., strong $f \in \{0,1\}^{2^n}$).

Want to inspect f in constant # positions and decide whether f is a Walsh-Hadamard codeword, i.e., whether f is linear.

But we already know this can be done using the BKR linearity test:

Pick $x, y \in \{0,1\}^n$ uniformly and independently at random. Accept if

$$f(x+y) = f(x) + f(y)$$

and reject otherwise.

Theorem 11.21

If $f : \{0,1\}^n \to \{0,1\}^n$ is such that

$$\Pr_{x,y \in \{0,1\}^n} \left[f(x+y) = f(x) + f(y) \right] \geq 1 - \delta$$

for some $\delta < \frac{1}{2}$, then there exists some linear function $L : \{0,1\}^n \to \{0,1\}^n$ such that $\delta(f, L) \leq \delta$.
That is, \(f \) is \(\delta \)-close to some linear function.

Aside about terminology

Please note that our "\(\delta \)-close" is what Arora-Barak refer to as "\((1-\delta)\)-close".

Suppose that we want not only to test \(f \) for linearity but evaluate the linear function that \(f \) encodes. What if function table of \(f \) is slightly distorted so that some \(\delta \)-fraction of values have been corrupted?

Can we still evaluate \(f \) with constant number of queries to find value \(f(x) \), even if position \(x \) is corrupted?

Formally, suppose for \(\delta < \frac{1}{4} \) that \(f \) is \(\delta \)-close to some linear function \(f' \). Since linear functions have distance exactly \(\frac{1}{2} \) between each other, \(\tilde{f} \) is unique. Can we evaluate \(\tilde{f} \) with constant \# queries to \(f \)?
Use linearity!

1. Choose $x' \in \{0,1\}^n$
2. Set $x'' = x + x'$
3. Read $y' = f(x')$
 $y'' = f(x'')$
4. Output answer $\tilde{f}(x) = y' + y''$

x' is uniformly distributed, so
$\Pr[f(x') \neq \tilde{f}(x')] \leq \delta$ by assumption.

x'' also uniformly distributed, so
$\Pr[f(x'') \neq \tilde{f}(x'')] \leq \delta$

x' and x'' are NOT independent, but
for any events A and B the union bound says that

$$\Pr[A \cup B] \leq \Pr[A] + \Pr[B]$$

So except with probability $1 - 2\delta$
we have $y' = \tilde{f}(x')$ and $y'' = \tilde{f}(x'')$

$= \tilde{f}(x + x')$
in which case

$y' + y'' = \tilde{f}(x') + \tilde{f}(x + x')$

$= \tilde{f}(x)$

by linearity.
This is called LOCAL DECODING of the Walsh-Hadamard code, or SELF-CORRECTION.

Now we want to prove Thm 11.19

\[NP \leq PCP_{1,\frac{1}{2}}(\text{poly}(n),1) \]

Sufficient to prove for one NP-complete language. We will use:

QuadEq

Given quadratic equations \(\{ E_1, \ldots, E_m \} \) over \(n \) variables, where \(E_i \) is of the form

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} u_i u_j = b_{i,j} \quad (*)
\]

(\(a_{i,j}, b_{i,j} \in \{0,1\} \)), is there a \(0,1 \)-assignment to the \(u_i \)'s satisfying all equations?

Proposition

QuadEq is NP-complete (even if every equation \(E_i \) has just a constant number of nonzero coefficients)
Proof Exercise.

(Since \(u'_i = (u_i)^2 \) in \(\text{GF}(2) \), we can assume that the format is as in (*) above without any loss of generality.)

Hence, any \textsc{quordea} instance can be described by

\[
\begin{align*}
&\text{an} \quad m \times n^2 \text{-dim matrix } A \quad \text{(over \text{GF}(2))} \\
&\text{an} \quad m \text{-dim vector } b \quad \text{(over \text{GF}(2))}
\end{align*}
\]

Given assignment to \(u = (u_1, \ldots, u_n) \), assignment to degree-2 monomials given by

\[
(u_1, u_1, u_2, \ldots, u_1 u_n, u_2 u_1, \ldots, u_n u_1) =
(u_2, u_2, u_3, \ldots, u_n u_1) =
= u \otimes u \quad \text{TENSOR PRODUCT}
\]

For such \(u \), \(u \otimes u \) instance is satisfied if \(\, A \cdot u = b \).

Hence, \textsc{quordea} can be restated as the following problem:

Given \(A, b \) as above, find \(n^2 \)-dimensional vector \(u \) such that

1. \(A \cdot u = b \)
2. Exists \(u \) such that \(u = u \otimes u \)
PCP, ATTEMPT 1

Proof: Assignment $u \in \{0,1\}^n$

Test: Pick equation $E_{i,j}$ at random, read required u_i, u_j (for any $i,j \neq 0$) and check if $E_{i,j}$ satisfied

Completeness: $OK, \gamma = \frac{1}{16}$

Soundness error: $\rightarrow \frac{5}{16}$

Randomness: logarithmic

Queries: $O(1)$ [assuming k-query]

PCP, ATTEMPT 2

Proof: $u \in \{0,1\}^n$

Test: For every equation $E_{i,j}$ flip a coin. Sum up all equations for which coin = 1

Check $\sum_{E \in S} \sum_{i,j} a_{E,i,j} u_i u_j = \sum_{E \in S} b_E$ (**+**)

Completeness: $OK, \gamma = 1$

Soundness: $OK, \gamma = \frac{1}{2}$

Given assignment u, at least one equation $E_{*,i,j}$ violated
Sum \((\text{T}) \) for all other equations in chosen set \(S \). Then flip coin for \(e^* \). Two cases:

1. Sum \((\text{T}) \) without \(e^* \) is satisfied. Then with prob \(= \frac{1}{2} \) \(e^* \) is included, which violates \((\text{T}) \).

2. Sum \((\text{T}) \) without \(e^* \) is already violated. Then with prob \(= \frac{1}{2} \) we don't pick \(e^* \) and \((\text{T}) \) is also violated.

Randomness: Polynomial

Query complexity: Expected linear!

PCP, Attempt 3

Proof: Ask for \(L = u \oplus u \) encoded as \(WH(u) \)

Test: Pick subset \(S \) of equations and check \((\text{T}) \) as before. Note that we know \(\sum e_i \geq 6e \) without querying anything. And

\[\sum e_i \sum_{i,j} a_{e_i e_j} u_i u_j \]

is a linear function! Hence we
read it from $WH(U)$ in an error-correcting way, after first having checked that $\Pi = WH(U)$ is indeed an encoding of a linear function. # queried constant.

Completeness $OK, = 1$

Soundness seems OK... Except, how do we know $U = u \otimes u$? We totally don't... if A's invertible, Xavier's error is 1/2

Randomness: polynomial

Query complexity: constant.

PCP: ATTEMPT 4 (FINAL)

$\Pi \in \{0, 1\}^{2^n + 2^{n^2}}$ encoding $WH(u)$ and $WH(U)$ (assuming that $U = u \otimes u$)

Let us denote $f = WH(u)$

$g = WH(U)$

Test (2) Test f and g repeatedly (but constant # times) until we are sure except with some probability ε that f is 0.001-close to linear f g is 0.001-close to linear g
For the remaining steps, assume f and g are close to these functions \tilde{f}, \tilde{g} (otherwise we will fail, but this is only with probability ε).

2. $\tilde{f} = WH(n)$ for some n.
 $\tilde{g} = WH(U)$ for some U.

 Can read from f and g in error-correcting way.

 Check 10 times:

 Pick $r, r' \in \{0, 1\}^n$.

 Reject unless $\tilde{f}(r) \tilde{f}(r') = \tilde{g}(r \oplus r')$.

3. Pick random subset S of equations as in (4) and check that (4) is satisfied by reading the corresponding position in $\tilde{g} = WH(U)$ from g in an error-correcting way.

 Accept if the read bit is $= \sum_{i \in S} b_i$.

See pages 251-252 in Arora-Barak for the detailed analysis. Below follow the highlights.
Randomness $\text{poly}(n)$ - OK
Query complexity constant - OK

Let us do completeness and soundness together. For the soundness, there is a satisfying assignment u and Π is the concatenation of $f = WH(u)$ and $g = WH(u \oplus u)$

Step 1 In the completeness case, the lineararity tests accept with prob 1

In the soundness case, we reject with probability ≥ 0.001 if functions are not that close to linear. Pick some constant K so that

$$1 - (1 - 0.001)^K > 1 - \epsilon/2$$

Then repeating both tests K times we will reject f, g that are not 0.001-close with probability $1 - \epsilon$

For the rest of the analysis, assume

$$\delta(f, \tilde{f}) = 0.001$$
$$\delta(g, \tilde{g}) = 0.001$$

for unique linear functions f, \tilde{f}
Step 2. In a correct proof \(\tilde{f} = f \), \(\tilde{f} = \tilde{g} \) and we have

\[
\tilde{f}(r) \tilde{f}(r') = \left(\sum_{i \in [n]} u_i r_i \right) \left(\sum_{j \in [n]} u_j r'_j \right)
\]

\[= \sum_{i,j} w_{ij} r_i r'_j \]

\[= (u \otimes u) \cdot (r \otimes r') \]

\[= \tilde{g}(r \otimes r') \]

which always accepts.

Suppose \(\tilde{g} = W^T(w) \) for \(w \neq u \otimes u \).

Write \(w \) as \(n^2 \)-matrix \(W = w_{ij} \).

Then

\[\tilde{g}(r \otimes r') = w \cdot (r \otimes r')\]

\[= \sum_{i,j} w_{ij} r_i r'_j \]

\[= r W r' \]

\[\tilde{f}(r) \tilde{f}(r') = (u \otimes r)(u \otimes r') \]

\[= \left(\sum_i u_i r_i \right) \left(\sum_j u_j r'_j \right) \]
\[
= \sum_{i,j,i',j'} u_{ij} r_{ij}^' \\
= r W r^'
\]

We reject if \(r W r' \neq r L L r' \)

By randomsubset principle, at least
half of all \(r \) satisfy

\[r W = r L \quad (\dagger) \]

(by same argument as for check of \((\dagger)\) above)

Fix \(r \) st. \((\dagger)\) holds

For such \(r \), at least half of \(r' \)
satisfy

\[(r W) r' \neq (r L L) r' \]

So with probability \(\geq 1/4 \) test rejects

Repeating 10 times, we get rejection

probability \(\geq 1 - (3/4)^{10} > 0.9 \)

(assuming all error-correcting results are
OK, but if this fails we can add this small probability to previous \(\varepsilon \)).
Step 3 If we haven't already rejected we can assume that there is some $u \in \text{EQ}_1$ such that $T \cong WH(u), WH(u \otimes u)$

where we denote $\tilde{f} = WH(u)$
$\tilde{g} = WH(u)$ for $u \otimes u = 0$

If the QUADEx instance is unsatisfiable, u falsifies at least one constraint.

Picking random S and checking (t), we have 50% probability of detecting this.
Repeat whole test 2-3 times as needed to get down below 1/2 soundness error.

Formally, we would have to be a bit more careful with our probabilities and do calculations along the lines below.

Scenario: No-instance E of QUADEx

Proof $T = f, g$

Case 1

f and g are not close to linear

Pr [failure to detect nonlinearity] $\leq \varepsilon_1$
Case 2 \(f(x) \approx f(y) \) does not hold

\[Pr[\text{failure to detect this}] \leq \sum_{\text{error-correcting reads}} Pr[\text{read fails}] + \sum_{\text{correct reads}} Pr[\text{test fails given correct read}] \leq \sigma_1^2 + \sigma_2^2 \leq \varepsilon_2 \]

Case 3 \(f(x) \approx \text{encodings of } \text{WH}(u) \text{ and } \text{WH}(u \oplus u) \)

\[Pr[\text{failure to detect a falsifying assignment}] \leq \sum_{\text{reads}} Pr[\text{read fails}] + \sum_{\text{reads}} Pr[\text{Test}(t) \text{ fails}] \leq \delta_1^2 + \delta_2^2 \leq \varepsilon_3 \]

Total failure probability \(\leq \max \{ \varepsilon_1, \varepsilon_2, \varepsilon_3 \} \leq \varepsilon_1 + \varepsilon_2 + \varepsilon_3 \)

(And usually \(\varepsilon \)-values can be made small enough anyway)