
Computational Complexity: Problem Set 3

Due: Tuesday November 24, 2015, at 23:59 AoE. Submit your solutions as a PDF �le by
e-mail to jakobn at kth dot se with the subject line Problem set 3: 〈your full name〉.
Name the PDF �le PS3_〈YourFullName〉.pdf with your name written in CamelCase without
blanks and in ASCII without national characters. State your name and e-mail address at the
very top of the �rst page. Solutions should be written in LATEX or some other math-aware
typesetting system with reasonable margins on all sides (ca 2.5 cm). Please try to be precise
and to the point in your solutions and refrain from vague statements. Write so that a fellow

student of yours can read, understand, and verify your solutions. In addition to what is
stated below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed�and indeed,
encouraged�but you should write down your own solutions individually and understand all
aspects of them fully. You should also acknowledge any collaboration. State at the very top
of the �rst page of your problem set solutions if you have been collaborating with someone
and if so with whom. (Note that collaboration is on a per problem set basis, so you should
not discuss di�erent problems on the same problem set with di�erent people.)
Reference material: Some of the problems are �classic� and hence it might be easy to �nd
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes, or which can be found in chapters of Arora-Barak covered in the course,
should be fair game, though, unless you are speci�cally asked to show something that we
claimed without proof in class. All de�nitions should be as given in class or in Arora-Barak
and cannot be substituted by de�nitions from other sources. It is hard to pin down 100%
watertight formal rules on what all of this means�when in doubt, ask the lecturer.
About the problems: Some of the problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. A total score of around 85 points should be
enough for grade E, 125 points for grade D, 165 points for grade C, 205 points for grade B,
and 245 points for grade A on this problem set. Any corrections or clari�cations will be
given at piazza.com/kth.se/fall2015/dd2445/ and any revised versions will be posted on
the course webpage www.csc.kth.se/DD2445/kplx15/.

1 (10 p) Show that if one-way functions exist, then P 6= NP.

2 (20 p) Show that BP · NP = AM[2].

3 (30 p) Recall that we de�ned an encryption scheme for plaintexts x ∈ {0, 1}m with encryption
keys k ∈ {0, 1}n to be a pair of functions

(
E(k, x), D(k, x)

)
=
(
Ek(x), Dk(x)

)
such that for every

key k and plaintext x it holds that Dk(Ek(x)) = x. An encryption scheme is perfectly secret

if for every pair of plaintext messages x, x′ ∈ {0, 1}m it holds that the distributions EUn(x)
and EUn(x′) are identical (where Un denotes the uniform distribution over {0, 1}n).

We claimed in class that no encryption scheme (E,D) with m > n can be perfectly secure.
Prove that this is so.
Hint: What happens if all distributions EUn(x) have the same support?
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4 (30 p) For a language L ⊆ {0, 1}∗, let Lk = {x ∈ L; |x| ≤ k} denote all strings in L of length at
most k. We say that L is downward self-reducible if there is a polynomial-time algorithm A that
given x and oracle access to L|x|−1 decides correctly whether x ∈ L or not.

Prove that if a language L is downward self-reducible, then it must hold that L ∈ PSPACE.

5 (30 p) Consider the following proposed interactive zero knowledge protocol for graph isomor-
phism:

Input: G0, G1 and private permutation π for Prover such that G1 = π(G0).

Veri�er: Sends random permutation π∗ and random bit bv.

Prover: Sends random bit bp.

Veri�er: Sends graph H = π∗(Gbp).

Prover: Sends permutation πH .

Veri�er: Accepts if and only if πH(H) = Gbv .

Analyze whether this protocol is complete, sound, and/or zero knowledge. For a full score you
need to provide formal proofs for each of the three properties establishing that the property in
question holds or fails to hold.
Remark: In order for this problem to make sense, we are tacitly making the assumption that the
graph isomorphism problem in itself is not e�ciently decidable in randomized polynomial time.
(This might well be false, of course, but that is a bit beside the point�the real focus of this
problem is on zero knowledge protocols, not graph isomorphism.)

6 (40 p) In our lectures on proof complexity, we de�ned the CNF encoding of the (negation of the)
pigeonhole principle PHPm

n for any number of pigeons m and pigeonholes n, but then focused
on m = n + 1 when proving the exp(Ω(n)) lower bound on resolution refutation length for the
formulas PHPn+1

n .
What would happen with this lower bound proof if we considered more than n+ 1 pigeons,

say m = n + 2, m = 2n, m = n2, or even m = 2n pigeons? Would the proof still work, and
would we still get a lower bound on the form exp(Ω(n))? Describe how to adapt the proof to
work for larger m; determine for how large m you can make it work; and/or explain when or
why the approach we used in class fails.
Remark: In order to solve this problem, it is not necessary to give a full answer to the question
of how the hardness of the formula PHPm

n depends on m�it is fully su�cient to analyze the
concrete lower bound approach that we employed in class and try to understand how far this
technique can (or cannot) be pushed. You do not need to prove all claims you make beyond
reasonable doubt�in particular, it is not necessary to prove any claims that we left unproven in
class�but it should be possible to see how to plausibly �ll in any gaps in your arguments.
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7 (40 p) When proving a lower bound on resolution refutation length, we studied a prosecutor-
defendant game and proved a lower bound on the size of a prosecutor strategy for PHPn+1

n in this
game. It is not hard to see that the same game can be played on any unsatis�able CNF formula F
(which the defendant claims to be satis�able), where the prosecutor asks about assignments
to variables x ∈ Vars(F ), or forgets such assignments, and the �explicit contradictions� the
prosecutor is trying to force are partial assignments falsifying some axiom clause C ∈ F . The
same reasoning we used in class shows that any resolution refutation of F in length L yields a
strategy for the prosecutor of size O(L) (i.e., with O(L) rules in the instruction book).

In this problem we are interested in the other direction. Suppose that the prosecutor has a
strategy for some formula F that requires consideration only of L cases in order to secure the
conviction of the defendant. Can such a strategy be converted to a resolution refutation of F
in length O(L)? Describe how to convert a prosecutor strategy to a resolution refutation in
essentially the same size, or explain why it seems hard to do the transformation in this other
direction.

8 (50 p) In this problem we want to work out some of the missing details in our discussion in class
concerning that cutting planes is exponentially stronger than resolution.

8a (20 p) Prove that if a CNF formula F is refutable in resolution in length L, then cutting
planes can refute F (using the canonical translation of clauses into linear inequalities) in
length O

(
L2
)
.

Hint: Show that cutting planes can e�ciently simulate an application of the resolution rule
on (the linear inequalities representing) a pair of clauses.

8b (10 p) LetG be an undirected connected graph with all vertices having even degree bounded
by some constant. Associate a variable xe with every edge e ∈ E(G). For every vertex v,
let E(v) denote the set of edges incident to v. Let the Even colouring formula EC (G)
consist of the conjunction of the set of clauses∧

S⊆E(v)
|S|=|E(v)|/2+1

((∨
e∈Sxe

)
∧
(∨

e∈Sxe
))

for all vertices v ∈ V (G) (encoding that the number of true and the number of false edges
incident to vertex v are equal).

Prove that EC (G) is unsatis�able if and only if the number of edges |E(G)| is odd.

8c (20 p) Prove that for any undirected connected graph G with all vertices having even degree
bounded by some (universal) constant K and with an odd total number of edges it holds
that cutting planes can refute EC (G) e�ciently. State explicitly what is the length of such
an e�cient cutting planes refutation that you can �nd. (You do not have to worry about
superoptimizing it�any reasonable bound is �ne�but it should match your refutation.)

Hint: Derive in cutting planes for each vertex v that the inequalities
∑

e∈E(v) xe ≥ |E(v)|/2
and

∑
e∈E(v)−xe ≥ −|E(v)|/2 must hold. What happens if you sum these inequalities over

all v ∈ V (G)? If you wish, you may assume for simplicity (and without loss of any points)
that all vertices v in G have degree at most 4.
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8d (175 bonus points) To prove that cutting planes is exponentially stronger than resolution
one would also show that resolution requires exponential length to refute EC (G) if the
graph G is well-connected enough. This is not really meant to be a problem on the problem
set, but just for your information let us sketch what a formal claim could look like.

Say that G is a (d, s, e)-edge expander graph if all vertices have degree at most d and for all
sets S ⊆ V (G), |S| ≤ s, it holds that

∣∣E(S, S)∣∣ =
∣∣{(u, v) ∈ E(G) : u ∈ S, v ∈ S

}∣∣ ≥ e|S|.
Then for (d, s, e)-edge expanders G such that s = Ω

(
|V (G)|

)
and e can be chosen close

enough to d�for instance, a randomly sampled 6-regular graph should probably do�it
holds that EC (G) requires exponential resolution length. To earn a lot of bonus points,
you could work out the details to prove a formal statement along the lines above.

Remark: If you really want to attack this problem, talk to the main instructor �rst about
what to read up on�there are better methods than prosecutor-defendant games.

9 (50 p) Let multiprover interactive protocols be de�ned as the interactive protocols in Section 8.1
in Arora-Barak, except that there are several provers and that the veri�er's messages in each
round depends on previous messages from all provers (and on the veri�er's private randomness).
The messages sent by each prover only depends on the communication with the veri�er, however,
just as before. Let MIP[N ] denote the set of languages that can be decided by N -multiprover
interactive protocols in a polynomial number of rounds (in analogy with IP = MIP[1] in De�ni-
tion 8.6 in Arora-Barak).

Prove that, as claimed in class, only two provers are needed to realize the full power of
multiprover interactive protocols. That is, prove that MIP[2] = MIP[poly], where MIP[poly]-
protocols have a number of provers scaling polynomially with the size of the input.

10 (60 p) The goal of this exercise is to give a complete proof that PSPACE ⊆ IP, strengthening the
result coNP ⊆ IP that was proven in class.

Given a quanti�ed Boolean formula (QBF) ψ = ∀x1∃x2∀x3 · · · ∃xn φ(x1, . . . , xn), we can
use arithmetization as in our proof of coNP ⊆ IP to construct a polynomial Pφ such that ψ is
true if and only if

∏
b1∈{0,1}

∑
b2∈{0,1}

∏
b3∈{0,1} · · ·

∑
bn∈{0,1} Pφ(b1, . . . , bn) 6= 0. However, the

SumCheck protocol we used to decide the #SatD problem for CNF formulas no longer works,
since each multiplication corresponding to a ∀-quanti�er can double the degree of the polynomial.

10a (20 p) Suppose that ψ is a QBF formula (not necessarily in prenex normal form as described
in De�nition 4.10 and discussed further below in Arora-Barak) satisfying the following
property: if x1, . . . , xn are the variables of ψ sorted in order of �rst appearance, then for
every variable xi there is at most a single universal quanti�er involving xj for any j > i
appearing before the last occurrence of xi in ψ. Show that in this case, when we run
the SumCheck protocol with the modi�cation that we check s(0) · s(1) = K for product
operations (i.e., ∀-quanti�ers), the prover only needs to send polynomials of degree O(n)
since the degree blow-up is at most a constant factor 2.

10b (20 p) Assuming that any QBF formula ψ can be rewritten to satisfy the property in
Problem 10a, use this to show that Tqbf ∈ IP and hence PSPACE ⊆ IP.

10c (20 p) Show that any QBF formula ψ of sizem can be transformed into a logically equivalent
formula ψ′ of size O(m2) that satis�es the property in Problem 10a.

Hint: Introduce a new variable yi for any occurrence of xi that we need to get rid of and
encode that xi and yi take the same truth value.
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