
Computational Complexity: Problem Set 4

Due: Friday January 8, 2016, at 23:59 AoE. Submit your solutions as a PDF �le by e-mail to
jakobn at kth dot se with the subject line Problem set 4: 〈your full name〉. Name
the PDF �le PS4_〈YourFullName〉.pdf with your name written in CamelCase without blanks
and in ASCII without national characters. State your name and e-mail address at the very top
of the �rst page. Solutions should be written in LATEX or some other math-aware typesetting
system with reasonable margins on all sides (at least 2.5 cm). Please try to be precise and to
the point in your solutions and refrain from vague statements. Write so that a fellow student

of yours can read, understand, and verify your solutions. In addition to what is stated below,
the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed�and indeed,
encouraged�but you should write down your own solutions individually and understand all
aspects of them fully. You should also acknowledge any collaboration. State at the very top
of the �rst page of your problem set solutions if you have been collaborating with someone
and if so with whom. (Note that collaboration is on a per problem set basis, so you should
not discuss di�erent problems on the same problem set with di�erent people.)
Reference material: Some of the problems are �classic� and hence it might be easy to �nd
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures
or in the lecture notes, or which can be found in chapters of Arora-Barak covered in the
course, should be fair game, though, unless you are speci�cally asked to show something
that we claimed without proof in class. All de�nitions used should be as given in class or
in Arora-Barak and cannot be substituted by de�nitions from other sources. It is hard to
pin down 100% watertight formal rules on what all of this means�when in doubt, ask the
lecturer.
About the problems: Some of the problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. A total score of around 85 points should be
enough for grade E, 120 points for grade D, 155 points for grade C, 190 points for grade B,
and 225 points for grade A on this problem set. Any corrections or clari�cations will be
given at piazza.com/kth.se/fall2015/dd2445/ and any revised versions will be posted on
the course webpage www.csc.kth.se/DD2445/kplx15/.

1 (10 p) The language QuadEq consists of systems of quadratic equations E = {E1, E2, . . . , Em}
that have 0/1-solutions, where by a quadratic equation E` we mean an equation on the form

n∑
i=1

n∑
j=1

a`,i,jxixj = b`

for a`,i,j , b` ∈ {0, 1}, and where all arithmetic is over GF(2).
Show that there is a reduction R from CircuitSat to QuadEq with the property that if C

is a circuit of size s with t inputs, then R(C) is a set of quadratic equations with O(s) equations
over s variables such that in any solution to R(C) the �rst t variables encode a satisfying input
for C.
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2 (10 p) Suppose that P is a strongly testable property, where P =
⋃∞
n=1 Pn for Pn ⊆ {f : Dn → R}

(i.e., some subset of all functions from some family of domains Dn to some �xed range R). Prove
that there is a non-adaptive one-sided tester for P with constant query complexity.

3 (20 p) Given a network G = (V,E) of computational agents V = [n] connected by communication
links (i, j) ∈ E, where we assume that G is a connected (undirected) graph of diameter D, give
a deterministic distributed algorithm that computes the total number of edges |E| in G in O(D)
rounds.

You can assume that all agents know n and that they know the index of their own vertex (as
well as the indices of their neighbours), but the diameter D is not known in advance. At the end
of the protocol, all agents should know |E|, and they should also know that the algorithm has
terminated. In every round O(log n) bits can be sent (in full duplex) over every link (i, j) ∈ E.

4 (20 p) In our lecture on property testing, we studied the 2n-dimensional vector space of functions
f : {±1}n → R with inner product

〈f, g〉 =
1

2n

∑
x∈{±1}n

f(x)g(x) .

In class, we claimed without too much of a proof that the set of functions {χα}α⊆[n] de�ned by
χα(x) =

∏
i∈α xi form an orthonormal basis for this vector space, namely the Fourier basis that

we then used to analyze the linearity test.
Fill in the details to establish this claim! That is, show that

〈χα, χβ〉 =

{
1 if α = β;

0 otherwise;

and argue that this implies that {χα}α⊆[n] is indeed an orthonormal basis.
Hint: Consider the symmetric di�erence γ = α4β = (α ∪ β) \ (α ∩ β) and prove that it holds
that

∑
x∈{±1}n χγ(x) = 0 if γ 6= ∅.

5 (20 p) One of the two key technical lemmas in Irit Dinur's proof of the PCP theorem is a gap

ampli�cation lemma which can be stated as follows:

For every q0, ` ∈ N+ there exist W ∈ N+, κ > 0 and ε0 > 0 such that there is a

polynomial-time reduction R from Maxq0CSP2 to Max2CSPW satisfying the fol-

lowing properties:

� If val(ϕ) = 1, then val(R(ϕ)) = 1.

� If val(ϕ) ≤ 1− ε for ε < ε0, then val(R(ϕ)) ≤ 1− `ε.
� |R(ϕ)| ≤ κ · |ϕ|.

In this lemma, the blowup of the alphabet size is from q0 to some unspeci�ed W , but this W is
independent of the size of the Maxq0CSP2 instance ϕ.

Show that if we instead allow the alphabet blowup to be a function of the instance size (and
drop the condition that the reduction should be polynomial-size), then for every ε′ > 0 there
exist W = W (|ϕ|) such that there is a reduction R from Maxq0CSP2 to Max2CSPW as above
except that if val(ϕ) < 1, then val(R(ϕ)) ≤ ε′.
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6 (20 p) Let us de�ne theMaxqCSPW problem for some �xedW ∈ N+ to consist of instances that
are collections of m constraints (C1, I1), (C2, I2), . . . , (Cm, Im) over a set of n variables, where
each Cj : [W ]q → {0, 1} is some q-ary predicate and each Ij = {ij,1, ij,2, . . . , ij,q} ∈ [n]q is a set
of q variable indices. An assignment α ∈ [W ]n satis�es (Cj , Ij) if Cj

(
αij,1 , αij,2 , . . . , αij,q

)
= 1,

and the task is to compute the maximal number of constraints that can be satis�ed by any
assignment. Determine for which values of q,W ∈ N+ the MaxqCSPW problem is easy and for
which values it is NP-hard.
Remark: Note that MaxqCSPW is not a decision problem, and so it does not quite make sense
to ask whether it is NP-complete or not. However, we can still prove that it is NP-hard in the
sense that there is a polynomial-time reduction from some NP-complete problem such that we
could decide this problem e�ciently if we had a polynomial-time algorithm for MaxqCSPW .

7 (30 p) Prove that if G = (V,E) is an (n, d, λ)-spectral expander, then for every subset of vertices
S ⊆ V with |S| ≤ n/2 it holds that

Pr
(u,v)∈E

[u ∈ S and v ∈ S] ≤ |S|
n

(
1

2
+
λ

2

)
.

Remark: There are quite generous hints in Arora-Barak on this problem referring to material
in Chapter 21. You are allowed (and encouraged) to make use of these hints, but you may not
use any statements from Chapter 21 without proof. You have to provide a stand-alone solution
(except that it can be based on what we did in class as speci�ed in the handwritten lecture
notes), and for any results you want to use from Chapter 21 you also have to provide complete,
written proofs in your solution why these results hold.

8 (50 p) Prove the following more general version of the result shown in class during Danupon
Nanongkai's guest lectures:

For any b > 0 and any function f : {0, 1}b × {0, 1}b → {0, 1} there is a distributed

network G(b) with Θ
(
b2
)
nodes and diameter O(log b) such that if there is a distributed

algorithm A on G(b) that computes f in T < b/2 rounds, then there is a 2-party
deterministic communication protocol for f : {0, 1}b × {0, 1}b → {0, 1} using at most

O
(
Tpolylog(n)

)
bits of communication.

Hint: Note that there is fairly detailed information in the slides posted on the course webpage
how the two parties Alice and Bob in the communication protocol for f : {0, 1}b×{0, 1}b → {0, 1}
should be embedded in a network G(b). Your task is to go through the weaker result proven in
class and then work out the additional details needed to establish the stronger theorem above.

9 (80 p) Let PCPc,s[r(n), q(n)] denote the class of languages which have PCP systems with com-
pleteness c, soundness error s, randomness r(n), and query complexity q(n). (Note that we
follow the standard de�nition here in that we do not add big-ohs for the randomness and query
complexity in the de�nition as in Arora-Barak. The veri�er is still non-adaptive, though.) In this
problem we want to discuss how the class of languages captured by PCPc,s[r(n), q(n)] changes
as we vary the parameters.

9a (10 p) Show that PCP1,0[0, poly(n)] = NP.

9b (10 p) Show that PCP1,0[log n, 42] = P.
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9c (30 p) Show that PCP1,2−100 [poly(n), 42] = coRP.

9d (30 p) For how large values of the soundness error s are you able to show that it holds that
PCP1,s[poly(n), 42] = coRP? Can you give some argument why for large enough values
s′ > 2−100 (but still as small as possible) it might hold that PCP1,s′ [poly(n), 42] 6= coRP

(under some more or less believable complexity-theoretic assumption, say)? How large do
you need s′ to be for this argument?

Remark: Please motivate all your answers carefully. If something is �obvious,� then make sure
to indicate why this is so.

10 (110 p) The purpose of this problem is to study some of the details left out during the overview
of the proof of Lemma 22.9 in Arora-Barak (the Powering lemma), and in the end to try to
patch together a complete proof of the lemma.

It is important to note however, that all of the subproblems below can be solved in isolation,

regardless of whether you want to try to produce a full proof of Lemma 22.9 or not. Also, results

claimed in previous subproblems can be used freely in solutions of later subproblems even if you

personally did not solve those previous problems.

10a (20 p) Let G = (V,E) be an undirected d-regular graph, possibly with multiple copies of
edges but without self-loops. Let ` ∈ N+ be �xed. Consider the following experiment:

1. Uniformly at random pick a vertex v0 ∈ V .
2. For i = 1, 2, . . . , `, uniformly at random pick an edge (vi−1, vi) incident to vi−1 and

walk to vi.

3. Output the edge (v`−1, v`).

Prove that (v`−1, v`) is a uniformly random edge in E (where we have to distinguish distinct
copies of edges if G is a multi-graph).

Now suppose that G might also have self-loops. Show that the experiment above results
in a distribution over the edges in E where every self-loop has half the probability of being
chosen compared to any proper edge between distinct vertices. Hence, the distribution is
still uniform if we count all self-loops (v, v) once and all proper edges (u, v), u 6= v, twice
(once for u and once for v).

Remarks: Note that each self-loop (v, v) only counts as one edge and hence only adds 1
to the degree of v (or, equivalently, only adds a term 1/d in the normalized adjacency
matrix). Just to give a concrete example, the graph G = (V,E) with V = {1, 2, 3} and
E = {(1, 1), (1, 2), (2, 3), (3, 3)} is a 2-regular graph with normalized adjacency matrix1

2
1
2 0

1
2 0 1

2
0 1

2
1
2


(where indeed self-loops are only �counted once� and other edges are �counted twice�).

Also note that since it is in some sense �intuitively obvious� that in a regular graph without
self-loops the edge (v`−1, v`) is uniformly random, we really want a formal proof that the
experiment above generates a uniform distribution over the edges.
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10b (30 p) For two random variables X and Y ranging over a �nite set Ω of outcomes, their
statistical distance (also known as total variation distance) is de�ned as

∆(X,Y ) = max
S⊆Ω

{∣∣Pr[X ∈ S]− Pr[Y ∈ S]
∣∣} =

1

2

∑
z∈Ω

∣∣Pr[X = z]− Pr[Y = z]
∣∣ .

Let St be the binomial distribution over t balanced coins (i.e., Pr[St = k] =
(
t
k

)
2−t). Prove

that for every δ < 1, it holds that ∆
(
St, St+δ

√
t

)
≤ 10δ.

Hint: Use Stirling's formula (and possibly other useful stu� that you can �nd in Appendix A
of Arora-Barak).

10c (20 p) Suppose that V is a non-negative discrete random variable and that we want to
prove a lower bound on Pr[V > 0]. First show that the expected value E[V ] does not say
anything about Pr[V > 0] in the sense that E[V ] can be arbitrarily large and Pr[V > 0]
arbitrarily small at the same time. Then prove the inequality

Pr[V > 0] ≥ (E[V ])2

E
[
V 2
] .

Hint: Consider the random variable V ′ distributed as V conditioned on V > 0. Show that
E
[
(V ′)2

]
≥ E[V ′]2 and use this to derive the inequality.

10d (40 p) Using the results in the subproblems above and in Problem 7 (regardless of whether
you solved these problems or not), present a complete, self-contained proof of the Powering
lemma. The goal of this exercise is (at least) twofold:

� To have you work out the proof in detail and make sure you understand it.

� To train your skills of mathematical writing.

When you write the proof, you can freely consult the lecture notes as well as the relevant
material in Arora-Barak, but you need to �ll in any missing details. Also, the resulting
write-up should stand on its own without referring to the proof of the lemma as presented
in Arora-Barak or in the lecture notes. Your write-up should be accessible to a fellow
student who has studied and understood the material presented in this course except for
the �nal two lectures when we discussed the Powering lemma.

For a full score you need to produce (a) a crisp, clear, easy-to-read exposition where (b) all
the technical details skipped over in class and/or the textbook have been taken care of
properly. You could think of the goal as producing nice, LATEX:ed lecture notes for a
hypothetical 24th lecture on the full proof of the Powering lemma.
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