Last time: Polynomial-size Boolean circuits $P/poly$

Believe that NP doesn't have poly-size circuits

Karp-Lipton theorem

If $NP \subseteq P/poly$, then $PH = \Sigma^P_2$

$P/poly$ also seems unlikely to contain EXP (regardless of what we believe about Karp-Lipton)

Meyer's theorem

If $EXP \subseteq P/poly$, then $EXP = \Sigma^P_2$

Some care needed for the proof... Arm-Beck doesn't seem quite right. Hopefully the notes for lecture 9 are better.

Corollary (of Meyer's theorem)

If $P = NP$, then $EXP \neq P/poly$

Otherwise get contradiction to time hierarchy theorem

Upper bounds can yield lower bounds
Most functions are really hard

Theorem (Shannon)
A majority of functions \(f : \{0,1\}^n \rightarrow \{0,1\} \) require circuits of size \(\geq 2^n / (10n) \)

Proof technique
- Probabilistic method
- Union bound \(\Pr[U \land A_i] \leq \sum_i \Pr[A_i] \)

TODAY
- Some subclasses of P/poly (that we will talk more about later in the course)
- Randomized computation (Turing machines that can flip coins)
Massively parallel computing
(idealized model)

- lots of processors (say, \(n \))
- Fast communication network (communication between any pair in \(O(\log n) \) steps)
- Synchronized computation (global clock)
- Small amount of communication between each "clock ride" (operation on \(O(\log n) \) bits, say)

Say that problem has efficient parallel algorithm if instance of size \(n \)
can be solved on parallel computer with \(n^{O(1)} \) processors in time \(\log^{O(1)} n \)

Recall: \(\text{DEPTH of circuit} = \text{length of longest (directed) path from any input to output} \)
\(0 \) is also OK

DEF. For \(d \in \mathbb{N}^* \), language \(L \) is in \(\text{NC}^d \) if decided by circuits \(\{ C \in \Sigma^{n \times n^{\log_d n}} : \text{poly}(n) \text{ size and depth } O(\log^d n) \} \)

\(\text{NC} = \bigcup_{d \in \mathbb{N}^*} \text{NC}^d \)
For the next definition, relax requirements on AND- and OR-gates so that they can have arbitrary fan-in. 0 also OK.

DEF For d ∈ \mathbb{N}^+, language \(L \) is in \(AC^d \) if decided by circuits \(\{ C_n \}_{n \in \mathbb{N}} \) with unbounded fan-in AND/OR-gates (and many NOT-gates) of poly(n) size and depth \(O(\log \log n) \).

\[NC^0 \text{ not so interesting} \]

Constant depth - dependence on constant # of gates already \(AC^0 \) interesting

Fan-in for \(AC^d \) at most poly(n) (why?)

So unbounded fan-in can be simulated in log depth

\[AC^0 \subseteq NC^1 \subseteq AC^1 \subseteq NC^2 \subseteq \ldots \]

This containment is known to be strict! (Yay!) Will prove it later in the course.
THEOREM

Language \(L \) has efficient parallel algorithm iff \(L \in \text{NC} \)

Note: Algorithm is uniform if circuit is uniform.
Non-uniform circuit \(\Rightarrow \) Algorithm with advice.

Proof sketch:

\((\Rightarrow)\) Suppose \(N \) processors, time \(D \)

Build \(D \) layers of \(N \) subcircuits each.
Circuit \(i \) in layer \(d \) does computation of processor \(i \) at time step \(d \).
Communication network - circuit wires between subcircuits.

\((\Leftarrow)\) Suppose \(L \in \text{NC} \) decided by \(\{C_n\}_{n \in \mathbb{N}} \). Let parallel computer read description of \(C_n \).

Now let every processor take responsibility for simulating a gate.
Send output to processors similarly gates that use this value.
Is it possible for every problem in \(\text{P} \) to find an efficient parallel implementation?

In many cases: yes! (addition, multiplication, division, matrix determinant, matrix rank, matrix inverse, etc.)

But always? Probably no.

What are the hardest problems in \(\text{P} \)?

Definition Language \(L \) is \(\text{P} \)-complete if

1. \(L \in \text{P} \)
2. \(\forall L' \in \text{P} \) it holds that \(L' \) is logspace-reducible to \(L \)

If \(L \) \(\text{P} \)-complete and \(L \in \text{NC} \), then \(\text{P} = \text{NC} \)

\[
\text{CIRCUIT EVAL} = \left\{ \langle C, x \rangle \mid x \in \{0,1\}^n \right. \\
\left. C \text{ is a } n \text{-input circuit} \right\}
\]

Theorem Circuit Eval is \(\text{P} \)-complete.
RANDOMIZED COMPUTATION

- Randomness as a computational resource
- Lots of deep & fascinating questions here — see Ch 8 in Aho-Berlekamp
- We'll get straight to the point: study Turing machines that can flip fair random coins

DEF: PROBABILISTIC TURING MACHINE (PTM)

A Turing machine with two transition functions δ_0, δ_1.
In each step, apply
δ_0 with probability $\frac{1}{2}$
δ_1 with probability $\frac{1}{2}$

Output of M on x, $M(x)$, now a random variable

PTM runs in time $T(n)$ if $\forall x$ halts in $\leq T(|x|)$ steps regardless of random choices

What should it mean that such a machine decides a language?
Compare to nondeterminism

- NDTM accepts if \exists one (out of exponentially many) accepting branch
- PTM: look at fraction of accepting branches
For language $L \subseteq \{0,1\}^*$ and $x \in \{0,1\}^*$, define
\[
L(x) = \begin{cases}
1 & \text{if } x \in L \\
0 & \text{if } x \notin L
\end{cases}
\]

Our model for efficient probabilistic/randomized computation:

\[\text{BPP} \text{ bounded-error probabilistic polynomial time}\]

DEF 2. A PTM M decides L in time $T(n)$ if $\forall x$

M halts in $T(1|x|)$ steps and $\Pr \left[M(x) = L(x) \right] \geq 2/3$.

\[\text{BPTIME}(T(n)) = \text{languages decided by PTMs in } O(T(n)) \text{ time}\]

\[\text{BPP} = \bigcup_{c \in \mathbb{N}} \text{BPTIME} (n^c)\]

Practically over random choices, not over inputs.

Constant 2/3 arbitrary (will see later).

Don't need perfectly fair coins (but we'll ignore this).

PROP 3. $L \in \text{BPP}$ if exist poly-time (deterministic) TM M and polynomial p s.t. for every x

\[\Pr_{r \in \{0,1\}^p(1|x|)} \left[M(x,r) = L(x) \right] \geq 2/3\]

Notational aside:

Uniform sampling from $\{0,1\}^n$:

$x \in \{0,1\}^n$

$x \sim \{0,1\}^n$

$x \sim \text{Un}$

COR 4. $P \subseteq \text{BPP} \subseteq \text{EXP}$

Proof Can try all possible random strings in exponential time and compute success probability.
Can't prove even $\text{BPP} \neq \text{NEXP}$

What about $\text{BPP} \text{ vs } \text{ P}$?

Fairly strong reasons to believe $\text{P} = \text{BPP}$!

[Discussed in Chs 19-20 in Arora-Barak—may not have time to cover this.]

Example of the power of randomization

POLYNOMIAL IDENTITY TESTING

given: polynomial (multivariate) with integer coeff. In implicit form

decide: Is the polynomial identically zero?

representation: algebraic circuit

like Boolean circuits, but gates are $+$, $-$, \times
can also have constants $0,1,...$ if we wish
inputs $x_1, ..., x_n$
single output node (sign)

not hard to see: computes some polynomial

$\text{ZEROP} = \{ \text{algebraic circuits corresponding to } \}$

polynomials that are identically zero

why identity testing?

given C, C', construct $D = C - C'$
and check if $D \in \text{ZEROP}$

Note compact representation

$\prod_{i=1}^{n} (1+ x_i)$ has 2^n terms

Circuit of size $2n$
SCHWARTZ-ZIPPEL LEMMA

Let \(p(x_1, x_2, \ldots, x_m) \) be non-zero poly of total degree \(\leq d \). Let \(S \) finite set of integers.
Then for \(a_1, \ldots, a_m \) chosen from \(S \) uniformly randomly with replacements
\[
P_0 \left[p(a_1, \ldots, a_m) = 0 \right] \geq 1 - \frac{d}{|S|}
\]

Proof: Induction over \(m \).

Base case \(m = 1 \): Univariate polynomial
Degree \(\leq d \) \(\Rightarrow \) at most \(d \) roots.
So \(p \) can evaluate to zero on at most \(d \) out of \(|S| \) integers.
Inductive step: See Ahoa-Sarkar App A.6

TESTING IDEA

Circuit of size \(m \) \(\Rightarrow \leq m \) multiplications
\(\Rightarrow \) degree \(\leq 2^m \)
So pick \(a_1, \ldots, a_m \in [1, 10 \cdot 2^m] \), evaluate circuit, and apply Schwartz-Zippel
If circuit \(C \) encodes zero poly \(\Rightarrow \) result always 0
if non-zero poly \(\Rightarrow \) 90\% of non-zero output.

Problem: If degree \(\times 2^m \), then numbers grow as large as \((10 \cdot 2^m)^2 \) exponentially many bits.
Hard to do in poly time...

Solution: "fingerprinting" compute modulo \(k \leq [2^m] \)