DD2445 Complexity Theory

3 Nov, 2017 (@ KTH)

13. Communication complexity of composed functions

Lecturer: Sagnik Mukhopadhyay Scribe: Sagnik Mukhopadhyay

Last time

- Funcion composition: We want to show $\mathsf{D}^{\mathsf{cc}}(f \circ g) = \Omega(\mathsf{D}^{\mathsf{q}}(f) \times \mathsf{D}^{\mathsf{cc}}(g))$. This is not true for all g.
- (δ, h) -hitting monochromatic rectangle distribution: We say that IP_m has $(o(1), m(\frac{1}{2} \varepsilon))$ -hitting monochromatic rectangle-distributions.

This lecture

We show the following theorem:

Theorem 13.1 (Generalized simulation). Let $\varepsilon \in (0,1)$ and $\delta \in (0,\frac{1}{100})$ be real numbers, and let $h \geq 6/\varepsilon$ and $1 \leq n \leq 2^{h(1-\varepsilon)}$ be integers. Let $f : \{0,1\}^n \to \mathcal{Z}$ be a function and $g : \mathcal{X} \times \mathcal{Y} \to \{0,1\}$ be a function. If g has (δ,h) -hitting monochromatic rectangle-distributions then

 $\mathsf{D}^{\mathsf{q}}(f) \le \frac{4}{\varepsilon \cdot h} \cdot \mathsf{D}^{\mathsf{cc}}(f \circ g^n).$

For a more complete proof than what we are going to do today, refer to [CKLM17].

Attention: Text like this implies caution! Please be careful.

A few notations (refer to Figure 1)

- Consider a product set $\mathcal{A} = \mathcal{A}_1 \times ... \times \mathcal{A}_n$, for some natural number $n \geq 1$, where each \mathcal{A}_i is a subset of $\{0,1\}^m$.
- Let $A \subseteq \mathcal{A}$ and $I = \{i_1 < i_2 < \cdots < i_k\} \subseteq [n]$, and $J = [n] \setminus I$.
- **Projection:** For any $a \in (\{0,1\}^m)^n$, we let $a_I = \langle a_{i_1}, a_{i_2}, \ldots, a_{i_k} \rangle$ be the projection of a onto the coordinates in I. Correspondingly, $A_I = \{a_I \mid a \in A\}$ is the projection of the entire set A onto I.
- For any $a' \in (\{0,1\}^m)^k$ and $a'' \in (\{0,1\}^m)^{n-k}$, we denote by $a' \times_I a''$ the *n*-tuple a such that $a_I = a'$ and $a_J = a''$.
- For $i \in [n]$ and a n-tuple $a, a_{\neq i}$ denotes $a_{[n]\setminus\{i\}}$, and similarly, $A_{\neq i}$ denotes $A_{[n]\setminus\{i\}}$.
- For $a' \in (\{0,1\}^m)^k$, we define the set of extensions $\operatorname{Ext}_A^J(a') = \{a'' \in (\{0,1\}^m)^{n-k} \mid a' \times_I a'' \in A\}$; we call those a'' extensions of a'.

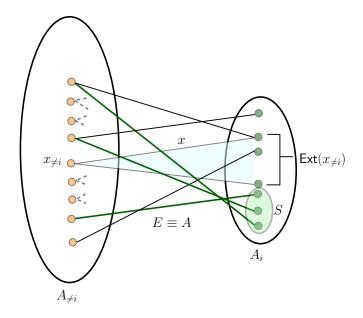


Figure 1: Projecions of set A

- For an integer n, a set $A \subseteq \mathcal{A}^n$ and a subset $S \subseteq \mathcal{A}$, the restriction of A to S at coordinate i is the set $A^{i,S} = \{a \in A \mid a_i \in S\}$.
- We write $A_I^{i,S}$ for the set $(A^{i,S})_I$ (i.e. we first restrict the *i*-th coordinate then project onto the coordinates in I).

13.1 The main idea

- We are given a protocol π for $f \circ g$ and input z for f. We will **simulate** a decision tree for f using π .
- Ideally we want to land on a leaf which has a pair (a, b) such that $g^n(a, b) = z$. This means that the label of the leaf is $f \circ g(a, b) = f(z)$.
- To trace such a root-to-leaf path, we will query bits of z from time to time.
- **Goal:** Devise a strategy to trace such a path.

13.2 Notion of the day: Thickness

Definition 13.2 (Aux graph, average and min-degrees). Let $n \geq 2$. For $i \in [n]$ and $A \subseteq \mathcal{A}^n$, the aux graph G(A, i) is the bipartite graph with left side vertices A_i , right side vertices $A_{\neq i}$ and edges corresponding to the set A, i.e., (a', a'') is an edge iff $a' \times_{\{i\}} a'' \in A$. (See Figure 1.)

We define the average degree of G(A,i) to be the average right-degree:

$$d_{avg}(A,i) = \frac{|A|}{|A_{\neq i}|},$$

and the min-degree of G(A, i), to be the minimum right-degree:

$$d_{min}(A, i) = \min_{a' \in A_{\neq i}} |\mathsf{Ext}(a')|.$$

Definition 13.3 (Thickness and average-thickness). For $n \geq 2$ and $\tau, \varphi \in (0,1)$, a set $A \subseteq \mathcal{A}^n$ is called τ -thick if

$$d_{min}(A, i) \ge \tau \cdot |\mathcal{A}|$$

for all $i \in [n]$. Note, an empty set A is τ -thick.

Similarly, A is called φ -average-thick if

$$d_{avg}(A, i) \ge \varphi \cdot |\mathcal{A}|$$

for all $i \in [n]$.

For a rectangle $A \times B \subseteq \mathcal{A}^n \times \mathcal{B}^n$, we say that the rectangle $A \times B$ is τ -thick if both Aand B are τ -thick. For n=1, set $A\subseteq \mathcal{A}$ is τ -thick if $|A|\geq \tau\cdot |\mathcal{A}|$.

13.3High average degree

Lemma 13.4 (Average-thickness implies thickness). For any $n \geq 2$, if $A \subseteq \mathcal{A}^n$ is φ average-thick, then for every $\delta \in (0,1)$ there is a $\frac{\varphi}{2n}$ -thick subset $A' \subseteq A$ with $|A'| \ge \frac{|A|}{2}$.

Proof idea. Go over every coordinate and discard vertices (and edges incident on them) which has extensions less than $\frac{\varphi}{2n}2^m$.

Consider the following algorithm. Set $\varphi = 4 \cdot 2^{-\varepsilon h}$ and $\tau = 2^{-h}$.

Algorithm 1 Decision-tree procedure assuming high average degree

- 1: Set v to be the root of the protocol tree for Π , I = [n], $A = \mathcal{A}^n$ and $B = \mathcal{B}^n$.
- 2: while v is not a leaf do
- if A_I and B_I are both φ -average-thick then
- 4: Let v_0, v_1 be the children of v.
- Choose $c \in \{0,1\}$ for which there is $A' \times B' \subseteq (A \times B) \cap R_{v_c}$ such that
- (1) $|A'_I \times B'_I| \ge \frac{1}{4} |A_I \times B_I|$ (2) $A'_I \times B'_I$ is τ -thick. 6:
- 7:

- ▶ Using Lemma 13.4
- Update A = A', B = B' and $v = v_c$.
- 9: Output $f \circ g(A \times B)$.

Alice communicates at node v.

- Let A_0 be inputs from A on which Alice sends 0 at node v and $A_1 = A \setminus A_0$. We can pick $c \in \{0,1\}$ such that $|A_c| \ge |A|/2$. Set $A'' = A_i$. Since A is φ -average-thick, A'' is $\varphi/2$ -average-thick.
- Using Lemma 13.4 on A'', we can find a subset A' of A'' such that A' is $\frac{\varphi}{4 \cdot n}$ -thick and $|A'| \geq |A''|/2$. Since $\varphi = 4 \cdot 2^{-\varepsilon h}$ and $n \leq 2^{h(1-\varepsilon)}$, the set A'_I will be 2^{-h} -thick, i.e. τ -thick. Setting B' = B, the rectangle $A' \times B'$ satisfies properties from lines 6–7.

Bob communicated at node v. A similar argument holds when Bob communicates at node v.

In the end, they are in a rectangle $A \times B$ which is τ -thick. Now we use the following lemma.

Lemma 13.5. Let $n, h \ge 1$ be integers and $\delta, \tau \in (0, 1)$ be reals, where $\tau \ge 2^{-h}$.

- 1. Consider a function $g: \mathcal{A} \times \mathcal{B} \to \{0,1\}$ which has (δ,h) -hitting monochromatic rectangle-distributions.
- 2. Let $A \times B \subseteq \mathcal{A}^n \times \mathcal{B}^n$ be a τ -thick non-empty rectangle.

Then for every $z \in \{0,1\}^n$ there is some $(a,b) \in A \times B$ with $g^n(a,b) = z$.

In particular, there is a pair $(a, b) \in A \times B$ such that $g^m(a, b)$ is the input z. So the protocol is correct. But it has not queried anything so far. What is wrong then?

13.4 Low average degree

The point is, the high average degree may not be maintained though out the execution of Algorithm 1 (The **if** condition at line 3 may fail from time to time). When it drops, we have to query z. Consider the following algorithm.

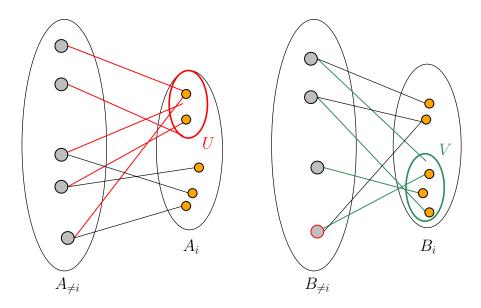


Figure 2: Projecions lemma

```
Algorithm 2 Query strategy
   1: if d_{\text{avg}}(A_I, j) < \varphi |\mathcal{A}| for some j \in [|I|] then
                  Query z_i, where i is the j-th (smallest) element of I.
                 Let U \times V be a z_i-monochromatic rectangle of g such that (1) A_{I \setminus \{i\}}^{i,U} \times B_{I \setminus \{i\}}^{i,V} is \tau-thick, (2) \alpha_{I \setminus \{i\}}^{i,U} \ge \frac{1}{\varphi} (1 - 3\delta) \alpha, (3) \beta_{I \setminus \{i\}}^{i,V} \ge (1 - 3\delta) \beta, \triangleright Using I
   3:
   5:
                                                                                                                                       ▷ Using Lemma 13.6
   6:
                  Update A = A^{i,U}, B = B^{i,V} and I = I \setminus \{i\}.
   7:
   8: else if d_{\text{avg}}(B_I, j) < \varphi |\mathcal{B}| for some j \in [|I|] then
                  Query z_i, where i is the j-th (smallest) element of I.
                Let U \times V be a z_i-monochromatic rectangle of g such that (1) A_{I\backslash\{i\}}^{i,U} \times B_{I\backslash\{i\}}^{i,V} is \tau-thick, (2) \alpha_{I\backslash\{i\}}^{i,U} \geq (1-3\delta)\alpha, (3) \beta_{I\backslash\{i\}}^{i,V} \geq \frac{1}{\varphi}(1-3\delta)\beta, \Rightarrow Using I Update A = A^{i,U}, B = B^{i,V} and I = I \setminus \{i\}.
 10:
 11:
 12:
                                                                                                                                     ⊳ Using Lemma 13.6
 13:
 14:
```

Lemma 13.6. Let $h \ge 1$, $n \ge 2$ and $i \in [n]$ be integers and $\delta, \tau, \varphi \in (0,1)$ be reals, where $\tau \ge 2^{-h}$.

- (a1) Consider a function $g: \mathcal{A} \times \mathcal{B} \to \{0,1\}$ which has (δ,h) -hitting monochromatic rectangle-distributions.
- (a2) Suppose $A \times B \subseteq \mathcal{A}^n \times \mathcal{B}^n$ is a non-empty rectangle which is τ -thick.
- (a3) Suppose also that $d_{avg}(A, i) \leq \varphi \cdot |\mathcal{A}|$.

```
Then for any c \in \{0,1\}, there is a c-monochromatic rectangle U \times V \subseteq \mathcal{A} \times \mathcal{B} such that 

(b1) A_{\neq i}^{i,U} and B_{\neq i}^{i,V} is \tau-thick,

(b2) \alpha_{\neq i}^{i,U} \geq \frac{1}{\varphi}(1-3\delta)\alpha,

(b3) \beta_{\neq i}^{i,V} \geq (1-3\delta)\beta,

where \alpha = |A|/|\mathcal{A}|^n, \beta = |B|/|\mathcal{B}|^n, \alpha_{\neq i}^{i,U} = |A_{\neq i}^{i,U}|/|\mathcal{A}|^{n-1} and \beta = |B_{\neq i}^{i,U}|/|\mathcal{B}|^{n-1}.
```

The constant 3 in the statement may be replaced by any value greater than 2, so the lemma is still meaningful for δ arbitrarily close to 1/2.

13.5 Putting everything together

```
Algorithm 3 Decision-tree procedure

Require: z \in \{0,1\}^n

Ensure: f(z)

1: Set v to be the root of the protocol tree for \Pi, I = [n], A = \mathcal{A}^n and B = \mathcal{B}^n.

2: while v is not a leaf do

3: if A_I and B_I are both \varphi-average-thick then

4: Run Algorithm 1.

5: else

6: Run Algorithm 2

7: Output f \circ g^n(A \times B).
```

Correctness.

- The algorithm maintains an invariant that $A_I \times B_I$ is τ -thick. This invariant is trivially true at the beginning.
- If both A_I and B_I are φ -average-thick, the algorithm finds sets A' and B' on line 4 using Lemma 13.4.
- If A_I is not φ -average-thick, the existence of $U \times V$ at line 6 is guaranteed by Lemma 13.6. Similarly in the case when B_I is not φ -average-thick.

We argue that $f(A \times B)$ at the termination of Algorithm 3 is the correct output. Given an input $z \in \{0,1\}^n$, whenever the algorithm queries any z_i , the algorithm makes sure that all the input pairs (x,y) in the rectangle $A \times B$ are such that $g(x_i,y_i) = z_i$ — because $U \times V$ is always a z_i -monochromatic rectangle of g. At the termination of the algorithm, I is the set of i such that z_i was not queried by the algorithm. As $n > 4C/\varepsilon h$, I is non-empty. Since $A_I \times B_I$ is τ -thick, it follows from Lemma 13.5 that $A \times B$ contains some input pair (x,y) such that $g^{|I|}(x_I,y_I) = z_I$, and so $g^n(x,y) = z$. Since Π is correct, it must follow that $f(z) = f \circ g^n(A \times B)$. This concludes the proof of correctness.

Number of queries Next we argue that the number of queries made by Algorithm 3 is at most $5C/\varepsilon h$.

- In the first part of the **while** loop (line 4), the density of the current $A_I \times B_I$ drops by a factor 4 in each iteration. There are at most C such iterations, hence this density can drop by a factor of at most $4^{-C} = 2^{-2C}$.
- For each query that the algorithm makes, the density of the current $A_I \times B_I$ increases by a factor of at least $(1-3\delta)^2/\varphi \geq \frac{1}{2\varphi} \geq 2^{\varepsilon h-3}$ (here we use the fact that $\delta \leq 1/100$).

Since the density can be at most one, the number of queries is upper bounded by

$$\frac{2C}{\varepsilon h - 3} \le \frac{4C}{\varepsilon h}, \quad \text{when } h \ge 6/\varepsilon.$$

References

[CKLM17] Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simulation theorems via pseudorandom properties. *CoRR*, abs/1704.06807, 2017.

Appendix: Missed proofs

13.5.1 Proof of Lemma 13.5

Lemma 13.7. Let $n \geq 2$ be an integer, $i \in [n]$, $A \subseteq \mathcal{A}^n$ be a τ -thick set, and $S \subseteq \mathcal{A}$. The set $A_{\neq i}^{i,S}$ is τ -thick. $A_{\neq i}^{i,S}$ is empty iff $S \cap A_i$ is empty.

Lemma 13.5 follows from repeated use of Lemma 13.7. Fix arbitrary $z \in \{0,1\}^n$. Set $A^{(1)} = A$ and $B^{(1)} = B$. We proceed in rounds i = 1, ..., n-1 maintaining a τ -thick rectangle $A^{(i)} \times B^{(i)} \subseteq A^{n-i+1} \times B^{n-i+1}$. If we pick $U_i \times V_i$ from σ_{z_i} , then the rectangle $(A^{(i)})_{\{i\}} \cap U_i \times (B^{(i)})_{\{i\}} \cap V_i$ will be non-empty with probability $\geq 1 - \delta > 0$ (because σ_{z_i} is a (δ, h) -hitting rectangle-distribution and $\tau \geq 2^{-h}$). Fix such U_i and V_i . Set a_i to an arbitrary string in $(A^{(i)})_{\{i\}} \cap U_i$, and b_i to an arbitrary string in $(B^{(i)})_{\{i\}} \cap B_i$. Set $A^{(i+1)} = (A^{(i)})_{\neq i}^{i,\{a_i\}}$, $B^{(i+1)} = (B^{(i)})_{\neq i}^{i,\{b_i\}}$, and proceed for the next round. By Lemma 13.7, $A^{(i+1)} \times B^{(i+1)}$ is τ -thick.

Eventually, we are left with a rectangle $A^{(n)} \times B^{(n)} \subseteq \mathcal{A} \times \mathcal{B}$ where both $A^{(n)}$ and $B^{(n)}$ are τ -thick (and non-empty). Again with probability $1 - \delta > 0$, the z_n -monochromatic rectangle $U_n \times V_n$ chosen from σ_{z_n} will intersect $A^{(n)} \times B^{(n)}$. We again set a_n and b_n to come from the intersection, and set $a = \langle a_1, a_2, \ldots, a_n \rangle$ and $b = \langle b_1, b_2, \ldots, b_n \rangle$.

13.5.2 Proof of Lemma 13.6

Fix $c \in \{0, 1\}$. Consider a matrix M where rows correspond to strings $a \in A_{\neq i}$, and columns correspond to rectangles $R = U \times V$ in the support of σ_c . Set each entry M(a, R) to 1 if $U \cap \mathsf{Ext}_A^{\{i\}}(a) \neq \emptyset$, and set it to 0 otherwise.

For each $a \in A_{\neq i}$, $|\mathsf{Ext}_A^{\{i\}}(a)| \geq \tau |\mathcal{A}|$, and because σ_c is a (δ, h) -hitting rectangle-distribution and $\tau \geq 2^{-h}$, we know that if we pick a column R according to σ_c , then M(a,R) = 1 with probability $\geq 1 - \delta$. So the probability that M(a,R) = 1 over uniform a and σ_c -chosen R is $\geq 1 - \delta$.

Call a column of M A-good if M(a, R) = 1 for at least $1 - 3\delta$ fraction of the rows a. Now it must be the case that the A-good columns have strictly more than 1/2 of the σ_c -mass. Otherwise the probability that M(a, R) = 1 would be $< 1 - \delta$.

A similar argument also holds for Bob's set $B_{\neq i}$. Hence, there is a c-monochromatic rectangle $R = U \times V$ whose column is both A-good and B-good in their respective matrices. This is our desired rectangle R.

We know: $|A_{\neq i}^{i,V}| \ge (1 - 3\delta)|A_{\neq i}|$ and $|B_{\neq i}^{i,V}| \ge (1 - 3\delta)|B_{\neq i}|$. Since $|B_{\neq i}| \ge |B|/|\mathcal{B}|$, we obtain $|B_{\neq i}^{i,V}|/|\mathcal{B}|^{n-1} \ge (1 - 3\delta)|B_{\neq i}|/|\mathcal{B}|^{n-1} \ge (1 - 3\delta)\beta$. Because $|A|/|A_{\neq i}| \le \varphi|A|$, we get

$$\frac{|A_{\neq i}|}{|\mathcal{A}|^{(n-1)}} \ge \frac{1}{\varphi} \cdot \frac{|A|}{|\mathcal{A}|^n} = \frac{\alpha}{\varphi}.$$

Combined with the lower bound on $|A_{\neq i}^{i,V}|$ we obtain $|A_{\neq i}^{i,U}|/|\mathcal{A}|^{n-1} \geq (1-3\delta)\alpha/\varphi$. The thickness of $A_{\neq i}^{i,U}$ and $B_{\neq i}^{i,V}$ follows from Lemma 13.7.