Ended in the middle of proof of $\text{coNP} \subseteq \text{IP}$
(to illustrate ideas in result $\text{IP} = \text{PSPACE}$)

Verifier

Probabilistic poly time (in 1x1)
Private random string r

Prover

Computationally unbounded

\[
\begin{align*}
 a_1 &= f(x,r) \\
 a_2 &= g(x,a_1) \\
 a_3 &= f(x,r,a_1,a_2) \\
 a_4 &= g(x,a_1,a_2,a_3) \\
 &\vdots
\end{align*}
\]

Verifier announces decision
\[\text{out}_f \langle f,g \rangle (x) \in \{0,1\}^*\]

Language L in IP if \exists protocol with polynomial (in 1x1) # rounds with

Completeness

\[x \in L \Rightarrow \exists \text{protocol } P \text{ \ \ \ } \Pr[\text{out}_v \langle V,P \rangle (x) = 1] \geq 2/3\]

Soundness

\[x \notin L \Rightarrow \forall P' \text{ \ \ \ } \Pr[\text{out}_v \langle V,P' \rangle (x) = 1] \leq 1/3\]
THEOREM 9 \[\text{coNP} \subseteq \text{IP} \]

Construct protocol for more general problem

\[\# \text{SAT}_D = \{ \langle \varphi, k \rangle \mid \varphi \text{ 3-CNF with exactly } k \text{ satisfying assignments} \} \]

\(k=0 \) gives 3-SAT as special case

Write clause \(C_i \) as polynomial \(p_j \)

\[x_i \lor \overline{x}_j \lor x_k \mapsto 1 - (1-x_i) \overline{x}_j (1-x_k) \]

Write formula \(\varphi = \bigwedge_{j=1}^m C_j \) as polynomial

\[P_\varphi = \prod_{j=1}^m P_j \quad (*) \]

Degree \(\leq 3m \)

Efficient representation in size \(O(m) \)

(arithmetic circuit)

Want to count \# satisfying assignments

\[K = \sum_{b_1 \in \{0,1\}} \cdots \sum_{b_n \in \{0,1\}} P_\varphi (b_1, \ldots, b_n) \quad (**) \]

Do calculations mod prime \(p > 2^n \geq K \)

Observation: If \(g(x_1, \ldots, x_n) \) we plug in \(x_i = b_i \) for \(i=2, \ldots, n \), then get univariate polynomial. True also for

\[h(x_i) = \sum_{b_2 \in \{0,1\}} \cdots \sum_{b_n \in \{0,1\}} g(x_1, b_2, \ldots, b_n) \quad (*) \]

(for \(g = P_\varphi \) or other polynomial)
We have that
\[K = \sum_{b_1 \in \{0,1\}} \cdots \sum_{b_n \in \{0,1\}} g(b_1, \ldots, b_n) \] (1)
iff \[h(0) + h(1) = K \] (obviously)

Idea of protocol
- Ask prover for prime \(p \in (2^n, 2^{2n}] \)
- Check that \(p \) prime
- Ask prover for \(h(x) \)
- Check \(h(0) + h(1) = K \)
- Check that prover was honest when giving \(h(x) \).

SUMCHECK \((g, K, n) \)

\[V: \]
\[V: \] If \(n = 2 \), accept if \(g(0) + g(1) = K \), reject otherwise
\[V: \] If \(n \geq 2 \), ask prover for \(h(x) \) in (1)

\[P: \]
Sends \(s(x) \)

\[V: \]
Check if \(s(0) + s(1) = K \), reject otherwise
Pick \(a \in \mathbb{R} \) \([0, p-1]\)
\[K' := s(a) \]
\[g'(x) := g(a, x_2, \ldots, x_n) \]
Run **SUMCHECK** \((g', K', n-1) \)

Recursive call checks that \(s(x) = h(x) \) by verifying
\[s(a) = \sum_{b_2 \in \{0,1\}} \cdots \sum_{b_n \in \{0,1\}} g(a, b_2, \ldots, b_n) \]
Lemma 10

If g degree-d polynomial and p prime, then SUMCHECK (g, K, n) has
- completeness 1
- soundness error $\leq \frac{d n}{p}$

- m clauses $\Rightarrow \deg(P_g) \leq 3m$
- 3-CNF over n variables $\Rightarrow m \leq 27n^3$
- Pick $p > 2^n$. Get soundness error $\leq \frac{d n}{p} < \frac{81n^4}{2^n} \Rightarrow 0$

So $\text{coNP} \subseteq \text{1P}$ follows from lemma 10

Proof of Lemma 10

Completeness: Obvious. Prover answers honestly, and all verifier checks pan out.

Soundness: By induction over n.

Base case ($n=1$): Want to detect if

$$\sum_{g(0), g(1)} g(0) \neq K$$

Compute $g(0) + g(1)$

0% probability of being fooled.
Inductive step: Want to detect if
\[\sum_{g(1)} \ldots \sum_{g(n)} \neq K \]
\[g(6) \in [0,15] \quad 6n \in [0,15] \]

Inductive hypothesis says that
\[\text{SUMCHECK}(g', K, n-1) \] has soundness error \[\leq \frac{dl}{p} \ (n-1) \]

Two cases:
(a) Prover honestly replies with \(h(x) \) as in (#)
 But then \(h(0) + h(1) \neq K \) and verifier has 0% probability of being fooled

(b) Prover replies with \(s(x) \neq h(x) \)
 \(\deg(s(x) - h(x)) \leq d \)
 \(\Rightarrow s(x) - h(x) \) has \(\leq d \) roots
 \(\Rightarrow \) at most \(d \) values for \(a \) such that \(s(a) = h(a) \)

(i) If prover is lucky and verifier picks \(s \) s.t. \(s(a) = h(a) \), then verifier fooled
(ii) Otherwise, get sumcheck instance for polynomial \(g' \) over \(n-1 \) variables with wrong value \(K \)

\[\Pr[\text{verifier V fooled}] = \Pr[V \text{ fooled in case (i)}] + \Pr[V \text{ fooled in case (ii)}] \]
\[\leq \frac{dl}{p} + \frac{dl}{p} \ (n-1) = \frac{dn}{p} \]

The lemma follows by the induction principle \(\square \)
We proved \(\text{coNP} \subseteq \text{IP} \).
Actually, most of what is needed for \(\text{PSPACE} \subseteq \text{IP} \) except for some extra twists.

What was the key idea? ARITHMETIZATION
CNF formula \(\Phi \) maps to polynomial \(P \).
Evaluate polynomial in much larger field \(\Rightarrow \)
makes it practically impossible for prover to cheat.

Can also define **MULTIPROVER INTERACTIVE PROTOCOLS (MIP)**. Provers agree beforehand on shared strategy but cannot communicate during protocol.

\[
\begin{align*}
\text{PROVER 1} & \quad \text{VERIFIER} & \quad \text{PROVER 2} \\
& \quad a_1 = f_1(x, r) & \quad b_1 = f_2(x, r) \\
& \quad a_2 = g_1(x, a_1) & \quad b_2 = g_2(x, b_2) \\
& \quad a_3 = f_1(x, r, a_1, a_2, b_2) & \quad b_3 = f_2(x, r, b_2, a_3, a_1) \\
\end{align*}
\]

Can allow up to polynomially many provers
(but verifier needs to have enough time to read all answers)

In fact, just going from 1 to 2 provers gives as much power as polynomially many provers.
Define MIP analogously to IP

Clearly, IP \subseteq MIP [can always ignore one prover]

Thm 11 [Babai, Fortnow, Lund '90]

MIP = \text{NEXP}

Why are 2 provers more useful?
Can use 2nd prover to force non-adaptivity of 1st prover.

Suppose prover 1 gets questions

q_1, q_2, \ldots, q_m

Prover 1 sees context and can choose answer to q_i depending on q_1, \ldots, q_{i-1}

But if verifier randomly picks $i \in \{1, \ldots, m\}$

and asks q_i from prover 2, and requires both provers 1 & 2 should give same answer to q_i, then prover 1 can no longer answer adaptively (because prover 2 cannot answer adaptively).

So provers might as well write down and publish big table with answers to all possible questions. [This needs a formal argument, of course.]

Verifier questions = random look-ups in table
PCP[r, q] = set of languages that can be decided by q random checks in table of size 2^r
[Informal definition]

Can restate Thm 11 as

\[\text{NEXP} = \bigcup_{\text{poly}} \text{PCP[poly, poly]} = \bigcup_{n \in \mathbb{N}} \text{PCP[n, n^c]} \]

Can be "scaled down" to

\[\text{NP} = \bigcup_{\text{polylog}} \text{PCP[polylog, polylog]} \]

And further improved (with lots of work)

\[\text{THM 12 PCP THEOREM [Arora-Safra '92] [Arora-Lund-Motwani-Sudan-Szegedy '92]} \]

\[\text{NP} = \text{PCP[O(log n), O(1)]} \]

Means that for any language \(L \subseteq \text{NP} \) can write down proofs \(\Pi \) of \(x \in L \) s.t.

- It has size \(\text{poly}(1|x|) \)
- It can be checked by reading constant \#bits (independent of size of \(x \))
- If \(x \in L \), accept w.h.p.
- If \(x \notin L \), reject w.h.p.

Now if this isn't magic...

Proof is highly nontrivial and would take several lectures even just for an overview.
Example 13 Graph Non-Isomorphism & PCP\[\text{poly}(n), O(1)\]

\[\text{GNI} = \{ \langle G_0, G_1 \rangle \mid G_0 \neq G_1 \}\]

Graphs on \(n\) vertices

Represent by adjacency matrix

Binary string of length \(n^2\) \(\leftrightarrow\) number in \([0, 2^{n^2} - 1]\)

Proof 11: Binary string of length \(2^{n^2}\)

Let position \(p \in [0, 2^{n^2} - 1]\) correspond to graph \(H_p\).

Expected format of proof

Bit in position \(p\) is:

a) 0 if \(H_p \cong G_0\)

b) 1 if \(H_p \cong G_1\)

c) don't care otherwise

Verifier test

1. Flip \(b \in \{0, 1\}\)

2. Choose random permutation \(\pi : [n] \rightarrow [n]\)

3. Let \(H_p = \pi(G_0)\)

4. Look up bit \(b'\) in position \(p\)

5. Accept if \(b = b'\); reject otherwise

Analysis

Completeness: If \(G_0 \neq G_1\), proof confirms

Table 11 according to specification.

Verifier's test will always accept
Soundness (sketch)

If \(G_0 \neq G_1 \), then probability of checking position \(p \) is independent of \(G \).
So, mentally, we can
(i) Choose random \(\sigma \)
(ii) Look up \(b \) in position \(p \) for \(H_{p} = \pi(G_i) \)
(iii) Only now flip \(b \in \{0,1\} \)
(iv) Accept if \(b = b' \) [with probability = \(\frac{1}{2} \)]

More formal proof of soundness

Suppose \(G_0 \neq G_1 \)

Consider for \(i \in \{0,1\} \) distributions
\[
D_i = \{ \pi(G_i) \mid \pi : [n] \rightarrow [n] \text{ uniformly sampled random permutations} \}
\]

Then \(D_0 \) and \(D_1 \) are identical.

Because following two experiments give same distribution

1. Pick random permutation \(\sigma : [n] \rightarrow [n] \) and return \(\sigma \)
2. Fix arbitrary permutation \(\sigma^* : [n] \rightarrow [n] \)
 Pick random permutation \(\sigma : [n] \rightarrow [n] \)
 Return \(\sigma \circ \sigma^* \)

So we can let \(\sigma^* \) be permutation such that \(\sigma^* (G_0) = G_1 \) [exact equality]
\[
\Pr[\text{accept}] = \sum_{\text{pos in tape}} \Pr[\text{read pos } p] \cdot \Pr[\text{read bit} = 0 \mid \text{read pos } p]
\]

\[
\Pr[\text{read pos } p] \text{ independent of } b \text{ by argument above}
\]

Hence, what bit \(b' = b[p] \) verifier reads is independent of coin flip \(b \). So

\[
(*) = \sum_{\text{pos } p} \Pr[\text{read pos } p] \cdot \Pr[b = \text{some fixed bit}]
\]

\[
= \Pr[b = \text{some fixed bit}] \cdot \sum_{\text{pos } p} \Pr[\text{read } p]
\]

\[
= \Pr[b = \text{some fixed bit}]
\]

\[
= \frac{1}{2} \text{ as claimed}
\]
More on to
CRYPTOGRAPHY
Just scratch the surface
DD2448 Foundations of Cryptography
given in spring
[Necessary for a well-rounded T)CS
education, if you ask me]

"HUMAN INGENUITY CANNOT CONCOCT
A CIPHER WHICH HUMAN INGENUITY
CANNOT RESOLVE"
Edgar Allan Poe 1841

Cat-and-mouse game throughout
the ages.

Shannon (late '40s): rigorous definition
of security

1970s: Birth of modern cryptography
Connection to computational complexity theory
Make code breaking a computationally
hard problem (so hardness = good news!)

Cross-fertilization: Many ideas from
crypto have turned out to be extremely
useful in complexity theory
Basic Task

key $k \in \mathbb{E}_R \{0,1\}^n$

Alice

$x \in \mathbb{E}_R \{0,1\}^n$

\[y = E_k(x) \]

\[x' = D_k(y) \]

Bob

\[x' = D_k(E_k(x)) = x \]

Eve

Definition: Encryption scheme is perfectly secret if $\forall x, x' \in \{0,1\}^n$ the distributions $E_{k_1}(x)$ and $E_{k_2}(x')$ are identical.

Recall: U_n = uniformly random n-bit string

Example 15 Suppose $n = m$

Let $y = \text{bitwise XOR of } x \text{ and } k$

$(y_i = x_i \oplus k_i \pmod{2})$ ONE-TIME PAD

Not hard to prove $E_k(x)$ looks perfectly random to outside observer.

Claim 16 If (E, D) is an encryption scheme with $n < m$, then it is not perfectly secret.

Proof: Nice exercise
Solution? Drop perfect secrecy
require secrecy only w. r. t. computationally bounded adversaries

[Even NSA is computationally bounded]

If this is to be possible, need P ≠ NP
(see Lem 9.2 in Amra-Barak)
But this is not sufficient

Let us very briefly sketch a basic assumption of modern crypto and
some consequences of it that allow us to recover a "computationally
secure one-time pad"

DEF 17 Function \(\varepsilon : \mathbb{N} \to [0, 1] \) is
NEGligible if \(\varepsilon(n) = n^{-\omega(1)} \)
That is, \(\forall c \in \mathbb{N} \) s. t. \(\forall n > N \)
\(\varepsilon(n) < n^{-c} \)

DEF 18 A poly-time computable function
\(f : \mathbb{E} \leftarrow \mathbb{E} \) is a **ONE-WAY
FUNCTION** if for every probabilistic
poly-time algorithm \(A \) there is a
negligible function \(\varepsilon \) s. t.
\[\Pr_{x \in \mathbb{E}} \left[A(y) = x \mid s. t. f(x') = y \right] < \varepsilon(n) \]
CONJECTURE/ASSUMPTION 19
One-way functions exist

CLAIM 20
If one-way functions exist, then P≠NP

Proof: Good exercise; not hard.

And if one-way functions exist, then computationally secure encryption schemes exist.

Will talk a little bit more about this (and some other aspects of cryptography) next lecture.