
DD2445 Complexity Theory: Problem Set 1

Due: Friday October 6, 2017, at 23:59 AoE. Submit your solutions as a PDF �le by e-mail to
jakobn at kth dot se with the subject line Problem set 1: 〈your full name〉. Name
the PDF �le PS1_〈YourFullName〉.pdf with your name written in CamelCase without blanks
and in ASCII without national characters. State your name and e-mail address at the very top
of the �rst page. Solutions should be written in LATEX or some other math-aware typesetting
system with reasonable margins on all sides (at least 2.5 cm). Please try to be precise and to
the point in your solutions and refrain from vague statements. Write so that a fellow student

of yours can read, understand, and verify your solutions. In addition to what is stated below,
the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed�and indeed,
encouraged�but you should always produce your solutions completely on your own, from
start to �nish, and you should understand all aspects of them fully. It is not allowed to
write down draft solutions together and then just add the �nishing touches individually.
You should also clearly acknowledge any collaboration. State at the very top of the �rst
page of your problem set solutions if you have been collaborating with someone and if so
with whom. Note that collaboration is on a per problem set basis, so you should not discuss

di�erent problems on the same problem set with di�erent people.

Reference material: Some of the problems are �classic� and hence it might be easy to �nd
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes should be fair game, though, unless you are speci�cally asked to show
something that we claimed without proof in class. All de�nitions should be as given in class
or in Arora-Barak and cannot be substituted by versions from other sources. It is hard to
pin down 100% watertight formal rules on what all of this means�when in doubt, ask the
main instructor.
About the problems: Some of the problems are meant to be quite challenging and you are
not necessarily expected to solve all of them. A total score of around 100 points should be
enough for grade E, 130 points for grade D, 160 points for grade C, 190 points for grade B,
and 220 points for grade A on this problem set. Any corrections or clari�cations will be
given at piazza.com/kth.se/fall2017/dd2445/ and any revised versions will be posted on
the course webpage www.csc.kth.se/DD2445/kplx17/.

1 (10 p) In class, we de�ned NP to be the set of languages L with the following property: There is
a polynomial-time (deterministic) Turing machine M and a polynomial p such that x ∈ L holds
if and only if there is a witness y of length exactly p(|x|) for which M(x, y) = 1.

Show that we can relax this so that the witness y is of length at most p(|x|), but might be
shorter for some x. That is, prove formally that with this new de�nition we get exactly the
same set of languages in NP. (This is not hard, but please be careful so that you do not run into
problems with any annoying details.)

Page 1 (of 5)

DD2445 Complexity Theory � Autumn 2017, period 1�2
Jakob Nordström

https://piazza.com/kth.se/fall2017/dd2445/
http://www.csc.kth.se/DD2445/kplx17/

2 (20 p) A legal k-colouring of a graph G = (V,E) is an assignment of colours {1, 2, . . . , k} to the
vertices in V such that if (u, v) ∈ E is an edge, then the colours of u and v are distinct. Let
k-Colouring be the language consisting of graphs that have a legal k-colouring. Recall that
we proved in class that 3-Colouring is NP-complete.

2a What is the complexity of 2-Colouring?

2b What is the complexity of 4-Colouring?

For full credit on each of these subproblems, provide either an explicit algorithm (for an upper
bound) or a reduction from some problem proven NP-complete in chapter 2 in Arora-Barak or
during the lectures.

3 (20 p) Consider the language

SpaceBoundedTM =
{
〈M,x, 1n〉

∣∣M accepts x in space n
}

where M is a deterministic Turing machine and 1n denotes a string of ones of length n (as
usual). Prove that SpaceBoundedTM is PSPACE-complete from �rst principles (i.e., prove
that SpaceBoundedTM is in PSPACE and that any other language in PSPACE reduces to it).

4 (20 p) We proved in class that there are oracles relative to which P and NP are equal by
de�ning the language ExpCom =

{
〈M,x, 1n〉

∣∣M accepts x within 2n steps
}
and showing that

P
ExpCom = NP

ExpCom = EXP. In this problem we want to understand how important (or
unimportant) the exact details in the de�nition of ExpCom is for this result to hold.

4a Let ExpCom′ =
{
〈M,x, 1n〉

∣∣M accepts x within n steps
}
. Does it hold that PExpCom

′
=

NP
ExpCom

′
= EXP hold? Modify the argument we gave in class to establish these equalities

or explain where the proof fails.

4b Let ExpCom′′ =
{
〈M,x, n〉

∣∣M accepts x within 2n steps
}

(where n in the input is a

number given in binary). Does it hold that PExpCom
′′

= NP
ExpCom

′′
= EXP? Adapt the

proof given in class or explain where it fails.

5 (20 p) Let us say that a function f : {0, 1}∗ → {0, 1}∗ is write-once logspace computable if f
can be computed by a Turing machine M that uses O(log n) space on its work tapes and whose
output tape is write-once. By a write-once tape we mean a tape where at every time step M
can either keep its head at the same position on the tape or write a symbol to it and move one
location to the right, but M can never read from the tape or move left. The used cells on the
write-once tape are not counted towards the space bound on M .

Prove that f is write-once logspace computable if and only if it is implicitly logspace com-

putable as de�ned in class.

Page 2 (of 5)

DD2445 Complexity Theory � Autumn 2017, period 1�2
Jakob Nordström

6 (30 p) A vertex cover of a graph G = (V,E) is a subset S ⊆ V of vertices such that for each
edge (u, v) ∈ E it holds that either u ∈ S or v ∈ S. The language

VertexCover =
{
〈G, k〉

∣∣G has a vertex cover of size k
}

is known to be NP-complete (and this fact can be assumed without proof).
Suppose that you are given a graph G and a parameter k and are told that the smallest

vertex cover of G is either (i) of size at most k or (ii) of size at least 3k. Show that there is a
polynomial-time algorithm that can distinguish between the cases (i) and (ii). Can you do the
same for a smaller constant than 3? If so, how small? Since VertexCover is NP-complete,
why does this not show that P = NP?

7 (30 p) We proved in class that the language Path =
{
〈G, s, t〉

∣∣∃ path from s to t in G
}

is
NL-complete. We also proved that NL = coNL, and, in particular, that it holds for the com-
plement language Path =

{〈
G′, s′, t′

〉 ∣∣¬∃ path from s′ to t′ in G′
}
that Path ∈ NL.

But this means that there must exist an implicitly logspace computable function that takes
a directed graph G′ and two vertices s′, t′ ∈ V

(
G′
)
and outputs a directed graph G and two

vertices s, t ∈ V (G) such that there is some path from s to t in G if and only if there is no path

from s′ to t′ in G′. Describe such a function and how to compute it.
You do not need to decribe every nut and bolt in the construction of G from G′, but your

description should contain enough details so that you could code it up in principle in your
favourite high-level programming language (using well-de�ned subroutines that we also know
can be coded up in principle).

8 (40 p) For a CNF formula F , let F̃ denote the �canonical 3-CNF version� of F constructed as
follows:

� Every clause C ∈ F with at most 3 literals appears also in F̃ .

� For every clause C ∈ F with more than 3 literals, say, C = a1 ∨ a2 ∨ · · · ∨ ak, we add to F̃
the set of clauses

{y0, y0 ∨ a1 ∨ y1, y1 ∨ a2 ∨ y2, . . . , yk−1 ∨ ak ∨ yk, yk} ,

where y0, . . . , yk are new variables that appear only in this subset of clauses in F̃ .

8a (10 p) Prove that F̃ is unsatis�able if and only if F is unsatis�able. (Please make sure
to prove this claim in both directions, and to be careful with what you are assuming and
what you are proving.)

8b (10 p) A CNF formula F is said to be minimally unsatis�able if F is unsatis�able but any
formula F ′ = F \ {C} obtained by removing an arbitrary clause C from F is always satis-
�able. Prove that F̃ is minimally unsatis�able if and only if F is minimally unsatis�able.

Page 3 (of 5)

DD2445 Complexity Theory � Autumn 2017, period 1�2
Jakob Nordström

8c (20 p) Consider the language

MinUnsat =
{
F
∣∣F is a minimally unsatis�able CNF formula

}
.

What can you say about the computational complexity of deciding this language?

For this subproblem, and for this subproblem only, please look at textbooks,

search in the research literature, or roam the internet to �nd an answer. As
your solution to this subproblem, provide a brief but detailed discussion of your �ndings
regarding MinUnsat together with solid references where one can look up any de�nitions
and/or proofs (i.e., not a webpage but rather a research paper or possibly textbook). Note
that you should still follow the problem set rules in that you are not allowed to collaborate
or interact with anyone other than your partner on this problem set.

9 (50 p) Show that P 6= SPACE
(
nk
)
for any �xed k ∈ N+.

Hint: Use padding.

10 (60 p) Your task in this problem is to produce a complete, self-contained proof of (the vanilla
version of) Ladner's theorem that we sketched in class. The goal is (at least) twofold:

� To have you work out the proof in detail and make sure you understand it.

� To train your skills in mathematical writing.

When you write the proof, you can freely consult the lecture notes as well as the relevant material
in Arora-Barak, but you need to �ll in all missing details. Also, the resulting write-up should
stand on its own without referring to the lecture notes, Arora-Barak, or any other source.

Your write-up should be accessible to a student who has studied and fully understood the
material at the level of DD1352 Algorithms, Data Structures, and Complexity but has not seen
any more computational complexity than that (i.e., not more than the �rst three lectures of the
current course, but you do not need to explain again the material in these lectures).

You are free to structure your proof as you like, except that all of the ingredients listed below
should be explicitly addressed somewhere in your proof. (You can take care of them in whatever
order you �nd appropriate, however. Please do not refer to the labelled subproblems in your
write-up, since it should be a stand-alone text, but make sure your peer reviewer can �nd without
problems where in your solution the di�erent items are dealt with.)

10a De�ne

SatP =
{
ψ01n

P (n)
∣∣∣ ψ ∈ CnfSat and n = |ψ|

}
as the language of satis�able CNF formulas padded by a suitable number of ones at the
end as determined by the function P , which we assume to be polynomial-time computable.

10b Prove that if P (n) = O(1), then SatP is NP-complete.

10c Prove that if P (n) = Ω(n/ log n), then SatP ∈ P.

Page 4 (of 5)

DD2445 Complexity Theory � Autumn 2017, period 1�2
Jakob Nordström

10d Give a complete description of the algorithm computing H(n) (as in the lecture notes) and
prove that H is well-de�ned in that the algorithm terminates and computes some speci�c
function.

10e Prove that not only does the algorithm terminate, but it can be made to run in time
polynomial in n. (Note that there are a number of issues needing clari�cation here, such
as, for instance, how to solve instances of CnfSat e�ciently enough.)

10f Prove that SatH ∈ P if and only if H(n) = O(1).

10g Prove that if SatH /∈ P, then H(n)→∞ as n→∞.

10h Assuming that P 6= NP, prove that SatH does not lie in P but also cannot be NP-complete.

Page 5 (of 5)

DD2445 Complexity Theory � Autumn 2017, period 1�2
Jakob Nordström

