
DD2446 Complexity Theory: Problem Set 4

Due: Friday November 8, 2013, at 23:59. Submit your solutions as a PDF �le by e-mail to
jakobn at kth dot se with the subject line Problem set 4: 〈your full name〉. Name
the PDF �le PS4_〈YourFullName〉.pdf (with your name coded in ASCII without national
characters), and also state your name and e-mail address at the top of the �rst page. Solutions
should be written in LATEX or some other math-aware typesetting system. Please try to be
precise and to the point in your solutions and refrain from vague statements. Write so that a

fellow student of yours can read, understand, and verify your solutions. In addition to what
is stated below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed�and indeed,
encouraged�but you should write down your own solution individually and understand all
aspects of it fully. You should also acknowledge any collaboration. State at the beginning of
the problem set if you have been collaborating with someone and if so with whom.
Reference material: Some of the problems are �classic� and hence it might be easy to �nd
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes, or which can be found in chapters of Arora-Barak covered in the course,
should be fair game, though, unless you are speci�cally asked to show something that we
claimed without proof in class. It is hard to pin down 100% formal rules on what all this
means�when in doubt, ask the lecturer.
About the problems: Some of the problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. A total score of around 50 points should
be enough for grade E, 80 points for grade D, 110 points for grade C, 140 points for grade B,
and 170 points for grade A on this problem set. Any corrections or clari�cations will be
given at piazza.com/kth.se/fall2013/dd2446/ and any revised versions will be posted on
the course webpage www.csc.kth.se/utbildning/kth/kurser/DD2446/kplx13/.

1 (10 p) Suppose that P is a strongly testable property, where P =
⋃∞

n=1 Pn for Pn ⊆ {f : Dn → R}
(i.e., some subset of all functions from some family of domains Dn to some �xed range R). Prove
that there is a non-adaptive one-sided tester for P with constant query complexity.

2 (10 p) Prove that for any function f : X × Y → Z it holds that Rpriv
ε (f) ≥ Rpub

ε (f).

3 (20 p) Recall that an instance of the Max q-CSPW problem over n variables is a collection

of m constraints (C1, I1), (C2, I2), . . . , (Cm, Im), where each Cj : [W ]q → {0, 1} is some q-ary
predicate and each Ij = {ij,1, ij,2, . . . , ij,q} ∈ [n]q is a set of q variable indices. An assignment

α ∈ [W ]n satis�es (Cj , Ij) if Cj

(
αij,1 , αij,2 , . . . , αij,q

)
= 1, and the task is to compute the maximal

number of constraints that can be satis�ed by any assignment. Determine for which values of

q, W ∈ N+ the Max q-CSPW problem is easy and for which values it is NP-hard.

Remark: Note that Max q-CSPW is not a decision problem, and so it does not quite make

sense to ask whether it is NP-complete or not. However, we can still prove that it is NP-hard in

the sense that there is a polynomial-time reduction from some NP-complete problem so that we

could decide this problem e�ciently if we had a polynomial-time algorithm for Max q-CSPW .
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4 (20 p) In the �nal lectures we proved a lower bound Rpub
ε (ip) = Ω(n) for some �xed but small

error probability ε on the randomized communication complexity of the inner product function

ip(x, y) =
∑n

i=1 xiyi (mod 2) for x, y ∈ {0, 1}n. We also noted that if we allow error probability

ε = 1/2, then there is a trivial 1-bit protocol that just outputs a random guess (which has a

50% chance of being correct).

In this problem, we want to study what happens with Rpub
ε (ip) when we relax the require-

ments on the protocol so that the error ε is not small but is allowed to approach 1/2. Suppose
that we let ε = 1/2−ε′ for some small but constant ε′, meaning that the protocol is only required

to have a small ε′-advantage over random guessing. How does the communication complexity

change? Are there still strong lower bounds? What happens for ε = 1/2 − ε′(n) such that

ε′(n) → 0 when n →∞, i.e., when the advantage over random guessing vanishes as n increases?

Determine for how small ε′ (constant or subconstant) we can still obtain an Ω(n) lower bound
for Rpub

1/2−ε′(ip) using the techniques we covered in class. For full credit, you do not need to get

additive or multiplicative constants exactly right, but the asymptotic bounds should be optimal.

5 (30 p) In Per's �rst guest lecture on the PCP theorem and hardness of approximation, we saw

two versions of the PCP theorem. The �rst version was phrased as follows:

There is some universal constant δ > 0 such that given a Max 3-Sat instance ϕ it

is NP-hard to distinguish between the cases Opt(ϕ) = 1 and Opt(ϕ) ≤ 1− δ.

We then de�ned PCPc,s[r, q, W ] to be class of languages having probabilistically checkable proofs
over an alphabet of size W with completeness c and soundness error s, where the veri�er uses

r random bits and makes q queries to the proof. This allowed us to give an equivalent formulation
of the theorem as stated next:

NP = PCP1,1/2[O(log n),O(1), 2].

We proved in class that the �rst version of the PCP theorem implies the second, but only sketched

the opposite direction.

Give a complete proof of the fact that the second version above of the PCP theorem implies

the �rst version. (This will involve rephrasing some of what was said in class in your own words,

but also �lling in the details that were omitted during the lecture.)

6 (20 p) One of the two key technical lemmas in the Dinur's proof of the PCP theorem, which we

outlined in class, was a gap ampli�cation lemma which we stated (essentially) as follows:

For every ` ∈ N+ there exist W ∈ N+, κ > 0 and ε0 > 0 such that there is a

polynomial-time reduction R from Max 2-CSP3 to Max 2-CSPW satisfying the

following properties:

� If Val(ϕ) = 1, then Val(R(ϕ)) = 1.

� If Val(ϕ) ≤ 1− ε for ε < ε0, then Val(R(ϕ)) ≤ 1− `ε.

� |R(ϕ)| ≤ κ · |ϕ|.

In this lemma, the blow-up of the alphabet size is from 3 to some arbitrary W , but this W is

independent of the size of the Max 2-CSP3 instance ϕ.
Show that if we instead allow the alphabet blow-up to be a function of the instance size (and

drop the condition that the reduction should be polynomial-size), then for every ε′ > 0 there

exist W = W (|ϕ|) such that there is a reduction R from Max 2-CSP3 to Max 2-CSPW as

above except that if Val(ϕ) < 1, then Val(R(ϕ)) ≤ ε′.
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7 (40 p) For x, y ∈ {0, 1}n interpreted as integers in [0, 2n − 1], let gt(x, y) = [x > y] be the

function that evaluates to 1 if x > y and 0 otherwise.

7a (15 p) Determine exactly the deterministic communication complexity D(gt).

7b (25 p) What is the best upper bound you can give for Rpub
ε (gt)? (Say, for ε = 1/4 if you

want a concrete ε, but giving asymptotic bounds for any constant ε ∈ (0, 1/2) is also �ne.)

8 (60 p) In Per's �rst lecture we also discussed how the class of languages captured by PCPc,s[r, q, W ]
changes as we vary the parameters. For instance, we saw that PCP1,0[0,poly(n), 2] = NP and

that PCP1,0[O(log n), 42, 2] = P. In this problem, we want to study this phenomenon further.

8a (30 p) Show that PCP
1,2−1042 [poly(n), 42, 2] = coRP.

8b (30 p) Can you give some argument why for larger values s′ > 2−1042
of the soundness

error it might hold that PCP1,s′ [poly(n), 42, 2] 6= coRP (under some more or less believable

complexity-theoretic assumption, say)? How large do you need s′ to be for this argument?

9 (90 p) The falsi�ed clause search problem is the following communication problem. The starting

point is some �xed unsatis�able CNF formula F and some �xed partition X
.
∪Y = Vars(F ) of the

variables of F between Alice and Bob. Given as inputs truth value assignments αX : X → {0, 1}
and αY : Y → {0, 1}, Alice and Bob should communicate to �nd a clause C ∈ F that is falsi�ed

by the assignment α = αX ∪ αY . (Such a clause always exists since F is unsatis�able.)

The pyramid graph Πh of height h is a DAG with h + 1 layers, where there is one vertex in

the highest layer (the sink z), two vertices in the next layer et cetera, down to h + 1 vertices

in the lowest layer 0. The ith vertex in layer L has incoming edges from the ith and (i + 1)st
vertices in layer L− 1. See Figure 1(a) for an illustration of the pyramid graph of height 2.

The purpose of this problem is to investigate the hardness of the falsi�ed clause search

problems for certain CNF formulas de�ned in terms of pyramids.

9a (30 p) The so-called pebbling formula over Πh, denoted PebΠh
, is the conjunction of the

following clauses:

� for all vertices s in the bottom layer, a unit clause s (i.e., a clause of size 1),

� For all vertices w in layers L ≥ 1 with predecessors u, v, the clause u ∨ v ∨ w,

� for the sink z, the unit clause z.

Figure 1(b) shows the formula corresponding to the pyramid in Figure 1(a).

Give the best upper and lower bounds you can for the deterministic communication com-

plexity of the falsi�ed clause search problem for PebΠh
. Your bounds should hold for any

partition X
.
∪ Y = Vars

(
PebΠh

)
of the variables. Express your bounds in terms of the

number of vertices n = (h+1)(h+2)/2 in the graph Πh. For full credit the bounds should

be asymptotically tight.

Hint: Some kind of binary search might be a fruitful idea here.
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(a) Pyramid graph Π2 of height 2.

u

∧ v

∧ w

∧ (u ∨ v ∨ x)
∧ (v ∨ w ∨ y)
∧ (x ∨ y ∨ z)
∧ z

(b) Pebbling formula PebΠ2 .

Figure 1. Example pebbling formula.

9b (20 p) In the XORi�ed pebbling formula PebΠh
[⊕] over Πh we instead think of each vertex v

as the exclusive or of two variables v1 ⊕ v2 and have the following clauses:

� for all vertices s in the bottom layer, the CNF encoding of s1 ⊕ s2,

� For all w in layers L ≥ 1 with predecessors u, v, the CNF encoding of ¬(u1 ⊕ u2) ∨
¬(v1 ⊕ v2) ∨ (w1 ⊕ w2),

� for the sink z, the CNF encoding of ¬(z1 ⊕ z2).

Figure 2 shows the XORi�ed pebbling formula for the pyramid in Figure 1(a).

Give the best upper bound you can for the deterministic communication complexity of

the falsi�ed clause search problem for PebΠh
[⊕], where Alice gets all variables X =

{u1, v1, w1, . . .} and Bob gets all variables Y = {u2, v2, w2, . . .} (again expressed in terms

of the number of vertices n = (h + 1)(h + 2)/2 in Πh).

9c (40 p) We say that a randomized protocol P solves the falsi�ed clause search problem

for F consistently if P computes some function f : Vars
(
F

)
→ {C ∈ F} except with error

probability ε, where f is such that for any input α = αX ∪ αY it holds that f(α) = Cα is

a clause in F falsi�ed by α.

Observe that deterministic protocols are consistent by de�nition, but for assignments α
falsifying several clauses in F a randomized protocol could potentially give di�erent answers

depending on the random coin �ips. For a consistent protocol, we require that it always

outputs some speci�c falsi�ed clause f(α) = Cα except with probability ε, and any other

clause is considered to be an error even if it is falsi�ed by α. Note, however, that the

protocol can choose any function f it wants, and in particular is free to pick any falsi�ed

clause Cα for each α independent of all other choices.

What is the cost of the best consistent randomized protocol you can give for PebΠh
[⊕] with

variables partitioned as in Problem 9b, expressed in terms of n = Θ(h2)?

9d (∞ p) Prove a ω(log n) deterministic communication complexity lower bound for the falsi-

�ed clause search problem for PebΠh
[⊕] with variables partitioned as in Problem 9b (ideally

a bound on the form Ω
(
nδ

)
for some δ > 0), or establish that no such lower bound exist.

Remark: This is an open research problem, and so you are not necessarily expected to

solve it. . .
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(u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)
∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

Figure 2. XORi�ed pebbling contradiction PebΠ2 [⊕].
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