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1 Implementation: EM-algorithm

Since some students have express a desire to implement the training algorithm
for HMMs, you can choose between 1 and 2 below,

1. If you like, implement the EM-algorithm for training HMMs and show by
applying it that it works.

2. Here one implementation assignment is described that is built on a pretty
unnatural but simple probabilistic model. In this assigment you are sup-
posed to implement an EM algorithm. First the probabilistic model is
described. You will later be able to access data generated from this model,
on the course page, so that you can test your implementations on this data
and describe the performance.

The sequences described below are circular and indices are counted modulo
n, so n = 0. Consider the following probabilistic model with parameters
f1, . . . , fn and λ1, . . . , λn, where fi is a distribution over {1, . . . ,m}. A
sequence a1, . . . , an where ai ∈ {1, . . . ,m} is generated as follows: (1) a
direction L or R is chosen for position i, the probability that L is chosen
is λi and the probability for R is 1− λi and (2) if i has direction L, then
ai is chosen according to fi−1 and otherwise according to fi.

The EM-algorithm: For the EM implementation, (1) there is an easy
way to find an ML solution where λi is 0 or 1 for each i, such solutions
are not accepted and (2) fi is an arbitrary distribution over [m]. You
should implement a proper EM-algorithm using the derivation of the Q
term below. The given samples are denoted X1, . . . , X l, i.e., there are l
samples. The expected log-likelihood, the Q term, is

Q(Θ,Θn) =

l∑
j=1

∑
Z∈{L,R}n

Pr
[
Z|Xj ,Θn

]
log Pr

[
Z,Xj |Θ

]
,

where Θn are the current parameters and Θ are the new parameters (i.e.,
the parameters that we are seeking). That is Z = Z1, . . . , Zn where Zi is
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the direction for ai (L or R). Let

δ(D,D′) =

{
1 if D = D′

0 otherwise
(1)

and notice

Pr [Z,X|Θ] =

n∏
i=1

Pr [Zi, Xi|Θ] (2)

Pr [Zi, Xi|Θ] = (λifi−1(Xi))
δ(Zi,L)((1− λi)fi(Xi))

δ(Zi,R) (3)

log Pr [Zi, Xi|Θ] = δ(Zi, L)(log λi + log fi−1(Xi)) (4)

+δ(Zi, R)(log(1− λi) + log fi(Xi)) (5)

(6)

l∑
j=1

∑
Z∈{L,R}n

Pr
[
Z|Xj ,Θn

]
log Pr

[
Z,Xj |Θ

]
(7)

=

l∑
j=1

∑
Z∈{L,R}n

Pr
[
Z|Xj ,Θn

] n∑
i=1

log Pr
[
Zi, X

j
i |Θ
]

(8)

=

n∑
i=1

l∑
j=1

∑
D∈{L,R}

Pr
[
Zi = D|Xj

i ,Θn

]
log Pr

[
Zi, X

j
i |Θ
]

(9)

=

n∑
i=1

l∑
j=1

(Pr
[
Zi = L|Xj

i ,Θn

]
(log λi + log fi−1(Xj

i )) (10)

+Pr
[
Zi = R|Xj

i ,Θn

]
(log(1− λi) + log fi(X

j
i )) (11)

2 Problems

1. Let M be an HMM. Give an efficient algorithm that for a given sequence
X = x1, . . . , xn generates sequences of states, “paths”, according to the
distribution Pr [π1, . . . , πn|X,M ].

2. Let M be an HMM and let pA, pC , pT , pG be probabilities summing to 1.
Let a random sequence of length n be a sequence X of n nucleotides drawn
from the distribution induced by pA, pC , pT , pG (i.e., for any position i, the
proability that xi = N is pN ). Give an efficient algorithm that for a given
n computes the probability that a random sequenc of length n satisfies
M(X) ≥ t (i.e., the probability that M generates X is at least t).
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