Assignment batch 2, Algorithmic Bioinformatics, Spring 2010

May 11, 2010

1 Implementation: EM-algorithm

Since some students have express a desire to implement the training algorithm for HMMs, you can choose between 1 and 2 below,

1. If you like, implement the EM-algorithm for training HMMs and show by applying it that it works.
2. Here one implementation assignment is described that is built on a pretty unnatural but simple probabilistic model. In this assigment you are supposed to implement an EM algorithm. First the probabilistic model is described. You will later be able to access data generated from this model, on the course page, so that you can test your implementations on this data and describe the performance.
The sequences described below are circular and indices are counted modulo n, so $n=0$. Consider the following probabilistic model with parameters f_{1}, \ldots, f_{n} and $\lambda_{1}, \ldots, \lambda_{n}$, where f_{i} is a distribution over $\{1, \ldots, m\}$. A sequence a_{1}, \ldots, a_{n} where $a_{i} \in\{1, \ldots, m\}$ is generated as follows: (1) a direction L or R is chosen for position i, the probability that L is chosen is λ_{i} and the probability for R is $1-\lambda_{i}$ and (2) if i has direction L, then a_{i} is chosen according to f_{i-1} and otherwise according to f_{i}.

The EM-algorithm: For the EM implementation, (1) there is an easy way to find an ML solution where λ_{i} is 0 or 1 for each i, such solutions are not accepted and (2) f_{i} is an arbitrary distribution over $[m]$. You should implement a proper EM-algorithm using the derivation of the Q term below. The given samples are denoted X^{1}, \ldots, X^{l}, i.e., there are l samples. The expected log-likelihood, the Q term, is

$$
Q\left(\Theta, \Theta_{n}\right)=\sum_{j=1}^{l} \sum_{Z \in\{L, R\}^{n}} \operatorname{Pr}\left[Z \mid X^{j}, \Theta_{n}\right] \log \operatorname{Pr}\left[Z, X^{j} \mid \Theta\right],
$$

where Θ_{n} are the current parameters and Θ are the new parameters (i.e., the parameters that we are seeking). That is $Z=Z_{1}, \ldots, Z_{n}$ where Z_{i} is
the direction for $a_{i}(L$ or $R)$. Let

$$
\delta\left(D, D^{\prime}\right)=\left\{\begin{array}{lc}
1 & \text { if } D=D^{\prime} \tag{1}\\
0 & \text { otherwise }
\end{array}\right.
$$

and notice

$$
\begin{align*}
\operatorname{Pr}[Z, X \mid \Theta]= & \prod_{i=1}^{n} \operatorname{Pr}\left[Z_{i}, X_{i} \mid \Theta\right] \tag{2}\\
\operatorname{Pr}\left[Z_{i}, X_{i} \mid \Theta\right]= & \left(\lambda_{i} f_{i-1}\left(X_{i}\right)\right)^{\delta\left(Z_{i}, L\right)}\left(\left(1-\lambda_{i}\right) f_{i}\left(X_{i}\right)\right)^{\delta\left(Z_{i}, R\right)} \tag{3}\\
\log \operatorname{Pr}\left[Z_{i}, X_{i} \mid \Theta\right]= & \delta\left(Z_{i}, L\right)\left(\log \lambda_{i}+\log f_{i-1}\left(X_{i}\right)\right) \tag{4}\\
& +\delta\left(Z_{i}, R\right)\left(\log \left(1-\lambda_{i}\right)+\log f_{i}\left(X_{i}\right)\right) \tag{5}
\end{align*}
$$

$$
\begin{align*}
\sum_{j=1}^{l} & \sum_{Z \in\{L, R\}^{n}} \operatorname{Pr}\left[Z \mid X^{j}, \Theta_{n}\right] \log \operatorname{Pr}\left[Z, X^{j} \mid \Theta\right] \tag{7}\\
= & \sum_{j=1}^{l} \sum_{Z \in\{L, R\}^{n}} \operatorname{Pr}\left[Z \mid X^{j}, \Theta_{n}\right] \sum_{i=1}^{n} \log \operatorname{Pr}\left[Z_{i}, X_{i}^{j} \mid \Theta\right] \tag{8}\\
= & \sum_{i=1}^{n} \sum_{j=1}^{l} \sum_{D \in\{L, R\}} \operatorname{Pr}\left[Z_{i}=D \mid X_{i}^{j}, \Theta_{n}\right] \log \operatorname{Pr}\left[Z_{i}, X_{i}^{j} \mid \Theta\right] \tag{9}\\
= & \sum_{i=1}^{n} \sum_{j=1}^{l}\left(\operatorname{Pr}\left[Z_{i}=L \mid X_{i}^{j}, \Theta_{n}\right]\left(\log \lambda_{i}+\log f_{i-1}\left(X_{i}^{j}\right)\right)\right. \tag{10}\\
& +\operatorname{Pr}\left[Z_{i}=R \mid X_{i}^{j}, \Theta_{n}\right]\left(\log \left(1-\lambda_{i}\right)+\log f_{i}\left(X_{i}^{j}\right)\right) \tag{11}
\end{align*}
$$

2 Problems

1. Let M be an HMM. Give an efficient algorithm that for a given sequence $X=x_{1}, \ldots, x_{n}$ generates sequences of states, "paths", according to the distribution $\operatorname{Pr}\left[\pi_{1}, \ldots, \pi_{n} \mid X, M\right]$.
2. Let M be an HMM and let $p_{A}, p_{C}, p_{T}, p_{G}$ be probabilities summing to 1 . Let a random sequence of length n be a sequence X of n nucleotides drawn from the distribution induced by $p_{A}, p_{C}, p_{T}, p_{G}$ (i.e., for any position i, the proability that $x_{i}=N$ is $\left.p_{N}\right)$. Give an efficient algorithm that for a given n computes the probability that a random sequenc of length n satisfies $M(X) \geq t$ (i.e., the probability that M generates X is at least t).
