
Algorithmic Bioinformatics DD2450, spring 2010,

Lecture 1

Lecturer Jens Lagergren
Several current and previous students

will be acknowledged in a separate document.

March 30, 2010

1 Dynamic programming

Dynamic programming is a technique for solving optimization problems that
have a structure containing overlapping subproblems. The idea in dynamic pro-
gramming is to only compute solutions to subproblems once and store them so
they can be used again if required. Solving a problem using dynamic program-
ming typically follows these steps.

1. Given a problem instance, identify the subproblem instances.

2. Construct a recursion expressing the optimal value of the problem instance
in terms of the optimal values of the subproblem instances.

3. Identify base cases for which the optimal value is known.

4. Compute and store the values of the optimal solutions of subproblem
instances. Iterate over the subproblem instances in such an order that
the optimal values required by the recursion have already been computed
when a subproblem instance is reached.

5. Locate where the optimal value will end up and optionally also construct
the optimal solution using the optimal values of the subproblems.

1.1 Longest common subsequence

A nice example of dynamic programming is finding the longest common subse-
quence (LCS) of two strings.

Definition 1. If X = x1, . . . , xm is a string and i1, . . . , ik are integers such
that 1 ≤ i1 < i2 < · · · < ik ≤ m, then xi1 , . . . , xik

is a subsequence of X.

Example 1. acba is a subsequence of the string X = abcbba.

1



Definition 2. A longest common subsequence (LCS) of strings X and Y is a
string Z such that:

1. Z is a subsequence of X.

2. Z is a subsequence of Y .

3. Z has the maximal length among all strings satisfying conditions 1 and 2.

1.2 Dynamic programming solution to the LCS problem

LCS can be formulated as a computational problem in the following manner

Input: Strings X = x1, . . . , xm and Y = y1, . . . , yn.

Output: An LCS of X and Y .

A naive solution would be to perform an exhaustive search, which would have
exponential time complexity. Instead this can be done in polynomial time with
a dynamic programming algorithm.

Definition 3. Let Xi = x1, . . . , xi be the prefix of X with length i.

Observations

1. If Z = z1, . . . , zk is an LCS of Xi and Y j (i ≥ 1, j ≥ 1), the following
holds

(a) (xi = yj = zk) ∨ (xi 6= yj ∧ zk 6= xi) ∨ (xi 6= yj ∧ zk 6= xi)

(b) if xi = yj = zk, then Zk−1 is an LCS of Xi−1 and Y j−1.

(c) if xi 6= yj ∧ zk 6= xi, then Z is an LCS of Xi−1 and Y j .

(d) if xi 6= yj ∧ zk 6= yjw, then Z is an LCS of Xi and Y j−1.

2. Let the matrix c(i, j) represent the length of an LCS of Xi and Y j then
c(i, j) can be computed recursively as

c(i, j) =

 0 if i = 0 or j = 0
c(i− 1, j − 1) + 1 if xi = yj

max{c(i− 1, j), c(i, j − 1)} otherwise

3. The LCS of ∅ (the empty string) and any string is ∅.

4. Computing c(i, j) requires the values c(i−1, j−1), c(i−1, j) and c(i, j−1).
They will always be available if each row is computed from left to right
starting at c(1, 1).

5. The length of the LCS is the value at c(m,n). By using back-pointers
describing which of the three cases that led to the value in each element
c(i, j), it is also possible to extract the corresponding LCS.

2



Algorithm 1 LCS of two strings using dynamic programming
Input: Strings X and Y of length m and n respectively.
Output: LCS of X and Y .

// Initialize base cases
for i = 0 to m do

C[i, 0] = 0
end for
for j = 0 to n do

C[0, j] = 0
end for
// Compute optimal values for other cases, save backtrack information
for i = 1 to m do

for j = 1 to n do
if X[i] == Y [j] then

C[i, j] = C[i− 1, j − 1] + 1
B[i, j] =↖

else if C[i, j − 1] ≥ C[i− 1, j] then
C[i, j] = C[i, j − 1]
B[i, j] =←

else
C[i, j] = C[i− 1, j]
B[i, j] = ↑

end if
end for

end for
// Construct optimal solution
LCS = ∅
i = m
j = n
while i 6= 0 and j 6= 0 do

if B[i, j] =↖ then
prepend X[i] to LCS
(i, j) = (i− 1, j − 1)

else if B[i, j] =← then
(i, j) = (i, j − 1)

else
(i, j) = (i− 1, j)

end if
end while
return LCS

3



Example 2. The following is the optimal value matrix when computing the
LCS of X = caabb and Y = acbca. A traceback is marked with back-pointers,
showing that one (of several possible) LCS is ab. The characters chosen to form
the subsequence are underlined.

c(i, j) a c b c a
0 0 0 0 0 0

c 0 0 1 1 1 1

a 0 1 1 1 1 2
↖

a 0 1 1 1 1 2
↑

b 0 1 ← 1 2 2 2
↖

b 0 1 1 2 ← 2 ← 2

Complexity of the algorithm

Time: O(mn), since there are (m + 1)(n + 1) cells and each is computed in
constant time.

Memory: O(mn), since each cell uses constant memory. To get only the length
of the LCS the memory complexity can be reduced to O(min(m,n)) by
saving only the previous line of the matrix c(i, j).

4


