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Phylogenetics is the study of how species are related through evolution. The
relationships between different species are represented in a phylogenetic tree,
where proximity in the tree is correlated with similarity. One procedure for
building a phylogenetic tree is to do the following.

1. Choose a gene family.

2. Pick one gene from each species of interest.

3. Make a multiple sequence alignment of the genes.

4. Discard columns that contain blanks.

5. Construct the tree using the similarity between the genes.

A problem with this procedure is that some gene families have an evolutionary
history that deviates from the species’; the so called gene tree differs from the
species tree. Gene duplications can for instance have this effect. For this reason
we must take care when selecting the gene family. We will however ignore
this problem from here on, and instead study the following two phylogenetic
problems.

• Big problem: Find the phylogenetic tree that best describes a set of
sequences.

• Small problem: Given a set of sequences and a tree, score the tree.

1 Parsimony

Notation 1. Let T be a binary rooted tree.

• E(T ) is the set of edges in T .

• V (T ) is the set of vertices in T .
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1.1 Big problem

• L(T ) is the set of leaves in T .

• R(T ) is the root vertex of T .

• Tv is the subtree of T that has v as root.

Definition 1. Let T be a binary rooted tree and Σ be an alphabet.

• A labeled tree is a pair 〈T, l〉 where l : V (T ) → Σm.

• A leaf-labeled tree is a pair 〈T, e〉 where e : L(T ) → Σm.

We will be working with aligned genes, i.e. strings in Σm where Σ = {A,C, G, T}.
We will use the Hamming distance as distance measure. The Hamming distance
of two strings s, s′ ∈ Σm is

h(s, s′) = the number of positions where s and s′ are different

We use the Hamming distance to produce a cost function for labeled trees.

H(T, l) =
∑

(u,v)∈E(T )

h(l(u), l(v))

Our goal is to find the labeled tree of minimum cost that, when restricted to the
leaves, has labels equal to a given leaf-labeling. We write the latter condition
as l|L(T ) = e. The cost of a leaf-labeled tree 〈T, e〉 is given by

µ(T, e) = min
l|L(T )=e

H(T, l)

1.1 Big problem

Input: s1, . . . , sn ∈ Σm

Output: Leaf-labeled tree 〈T, e〉 such that

1. e is a bijection between L(T ) and {s1, . . . , sn}.
2. µ(T, e) is minimal with respect to (1).

This problem is NP-complete. There exist approximation algorithms that can
approximate the solution within a factor around 1.57. Those algorithms are not
covered in this course, instead we will use heuristic methods.

1.2 Small problem

Input: Leaf-labeled tree 〈T, e〉.

Output: A labeling l such that

1. l|L(T ) = e

2. µ(T, e) = H(T, l)
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1.2 Small problem

The cost can be computed one position at a time. I.e. we can solve a problem
instance with labels in Σm by solving m problem instances with labels in Σ.
Therefore we will focus on solving the problem for m = 1.
This problem can be solved using dynamic programming. The subproblem is
to, given a tree with a labeled root, calculate the cost µ(T, e). Let µ(T, e,N) be
the minimum cost of the leaf-labeled tree 〈T, e〉 when the root is labeled N ∈ Σ,
i.e.

µ(T, e,N) = min
l : V (T ) → Σ
l|L(T ) = e
l(R(T )) = N

H(T, l)

Let c(v,N) = µ(Tv, e|L(Tv), N). This gives the following base cases for v ∈ L(T )

c(v,N) =
{

0 if N = e(v)
∞ otherwise

and the following recursion for u ∈ V (T )\L(T ) with children v and w.

c(u, N) = min
Nv,Nw∈Σ

h(Nv, N) + c(v,Nv) + h(Nw, N) + c(w,Nw)

We iterate over the instances in such a way that the children of a vertex are
always visited before the vertex itself. The solution is constructed by starting
from the optimal root-labeling and then following back-pointers stored during
the recursion. This dynamic programming algorithm has a time complexity of
O(n|Σ|3) where n = |V (T )|. We run the algorithm m times, so in total we get
a time complexity of O(nm|Σ|3).
The complexity of the algorithm can be improved by individually minimizing
the cost resulting from each subtree, since they are independent during mini-
mization. This gives the following change in the recursion, which reduces the
complexity by a factor |Σ|.

c(u, N) = ( min
Nv∈Σ

h(Nv, N) + c(v,Nv)) + ( min
Nw∈Σ

h(Nw, N) + c(w,Nw))

We can also note that, for each of the two minimizations, either N or the
optimum at the subtree’s root will minimize the expression. Hence we only
have to test a constant number of alternatives, allowing us to compute the cost
in constant time. The complexity hence lands at O(nm|Σ|).

3



2 Branch swap

A branch swap is a tree operation. The picture below shows a branch swap
applied to the center edge of the tree to the left, producing the tree on the
right.

• See figure 1

Figure 1: Branch Swapping

The operation can be combined with hill climbing to search for a good tree.
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