
Algorithmic Bioinformatics DD2450, spring 2010,

Lecture 11

Lecturer Jens Lagergren
Several current and previous students

will be acknowledged in a separate document.

May 22, 2010

1 Four Point Condition

Consider four points A, B, C and D in an additive metric. One of the following
three inequalities must hold, where D(i, j) = dT (i, j) (see figures 1 - 2):

1. D(A,B) + D(C,D) ≤ D(A,C) + D(B,D) = D(A,D) + D(B,C)

2. D(A,C) + D(B,D) ≤ D(A,B) + D(C,D) = D(A,D) + D(B,C)

3. D(A,D) + D(B,C) ≤ D(A,C) + D(B,D) = D(A,B) + D(C,D)

Figure 1: Four point condition - condition 1

Moreover, by observing a quartet it is also possible to derive the following in-
equality (see figure 3):

max(D(A,B) + D(C,D), D(A,C) + D(B,D), D(A,D) + D(B,C))−
− min(D(A,B) + D(C,D), D(A,C) + D(B,D), D(A,D) + D(B,C))

≥ 2×minimum edge length in T (D)

1

Figure 2: Four point condition - condition 2

Figure 3: Four point condition - paths in red show max(D(A,B) +
D(C,D), D(A,C) + D(B,D), D(A,D) + D(B,C)), paths in green show
min(D(A,B) + D(C,D), D(A,C) + D(B,D), D(A,D) + D(B,C)) and path in
violet shows 2× minimum edge length in T (D)

2 Cherry Identification

Given an additive n× n distance matrix D let T = T (D).

Idea: Identify a cherry i, j in T and reduce it (i.e. i, j s is obtained by re-
moving i and j from T , alter D s.t. E is obtained and s = T (E)). Recursively
apply the step and afterwards add i and j to s.

2.1 Version 1

Let

wij = |{u, v ∈ {1, . . . , n}\{i, j}(D(i, u) + D(j, v))− (D(i, j) + D(u, v)) > 0}|

Claim

wij =
(

n− 2
2

)
⇔ i, j is a cherry in T

Proof Assume that i, j is a cherry in T and (u, v) ∈ {1, . . . , n}\{i, j}. Then
i, j, u, v gives a quartet where:

(D(i, u) + D(j, v))− (D(i, j) + D(u, v)) > 0

2

2.2 Version 2

Hence

i, j is a cherry in T ⇒ wij =
(

n− 2
2

)
Now assume that i, j is not a cherry. Then there exists a pair (u, v) ∈ {1, . . . , n}\{i, j}
that gives a configuration for which

wij <

(
n− 2

2

)
So the equivalency claim holds.

Time complexity The identification takes time Ω(n4), which is only reason-
able for small instances.

2.2 Version 2

A more efficient algorithm for cherry identification is desirable. One might
consider using the following idea:

argmini,jD(i, j)

However this method only works for ultra-metric trees e.g. when time is used
as edge lengths. It is incorrect in the general case since for certain instances the
distance between leaves can be misguiding.

3 Neighbor Joining (NJ)

• Let SD(i, j) = (n− 2)D(i, j)−
∑

k(D(i, k) + D(j, k))

• Identify sibling leafs

– i.e. take argmini·jSD(i, j)

• Reduce i, j to a “new leaf” a with distances

– D(a, x) = (D(i, x) + D(j, x))/2

• Call NJ recursively on the new matrix

• Add i and j below a in the tree returned

• See figure 4 - 6

Time complexity O(n3), for an n× n distance matrix D.

3

3.1 The Proof

Figure 4: The tree T

Figure 5: A cherry

3.1 The Proof

• See figures 7 and 8

• Reduce i, j to new taxa a: E(a, x)← (D(i, x) + D(j, x))/2

• lS(a, b)← lT (b, a) + (lT (a, i) + lT (a, j))/2

• dS(x, a)
= dS(x, b) + lT (b, a) + (lT (a, i) + lT (a, j))/2
= dT (x, b) + lT (b, a) + (lT (a, i) + lT (a, j))/2
= D(x, b) + (l(b, i) + l(b, j))/2
= (D(x, i) + D(x, j))/2

4

3.1 The Proof

Figure 6: The tree S

Figure 7: NJ - The proof

Figure 8: NJ - The proof (continued)

5

