Algorithmic Bioinformatics DD2450, spring 2010, Lecture 11

Lecturer Jens Lagergren

Several current and previous students will be acknowledged in a separate document.

May 22, 2010

1 Four Point Condition

Consider four points A, B, C and D in an additive metric. One of the following three inequalities must hold, where $D(i, j)=d_{T}(i, j)$ (see figures 1-2):

1. $D(A, B)+D(C, D) \leq D(A, C)+D(B, D)=D(A, D)+D(B, C)$
2. $D(A, C)+D(B, D) \leq D(A, B)+D(C, D)=D(A, D)+D(B, C)$
3. $D(A, D)+D(B, C) \leq D(A, C)+D(B, D)=D(A, B)+D(C, D)$

Figure 1: Four point condition - condition 1

Moreover, by observing a quartet it is also possible to derive the following inequality (see figure 3):

$$
\begin{gathered}
\max (D(A, B)+D(C, D), D(A, C)+D(B, D), D(A, D)+D(B, C))- \\
-\min (D(A, B)+D(C, D), D(A, C)+D(B, D), D(A, D)+D(B, C)) \\
\geq 2 \times \text { minimum edge length in } T(D)
\end{gathered}
$$

Figure 2: Four point condition - condition 2

Figure 3: Four point condition - paths in red show $\max (D(A, B)+$ $D(C, D), D(A, C)+D(B, D), D(A, D)+D(B, C))$, paths in green show $\min (D(A, B)+D(C, D), D(A, C)+D(B, D), D(A, D)+D(B, C))$ and path in violet shows $2 \times$ minimum edge length in $T(D)$

2 Cherry Identification

Given an additive $n \times n$ distance matrix D let $T=T(D)$.
Idea: Identify a cherry i, j in T and reduce it (i.e. $i, j s$ is obtained by removing i and j from T, alter D s.t. E is obtained and $s=T(E)$). Recursively apply the step and afterwards add i and j to s.

2.1 Version 1

Let

$$
w_{i j}=|\{u, v \in\{1, \ldots, n\} \backslash\{i, j\}(D(i, u)+D(j, v))-(D(i, j)+D(u, v))>0\}|
$$

Claim

$$
w_{i j}=\binom{n-2}{2} \Leftrightarrow i, j \text { is a cherry in } T
$$

Proof Assume that i, j is a cherry in T and $(u, v) \in\{1, \ldots, n\} \backslash\{i, j\}$. Then i, j, u, v gives a quartet where:

$$
(D(i, u)+D(j, v))-(D(i, j)+D(u, v))>0
$$

Hence

$$
i, j \text { is a cherry in } T \Rightarrow w_{i j}=\binom{n-2}{2}
$$

Now assume that i, j is not a cherry. Then there exists a pair $(u, v) \in\{1, \ldots, n\} \backslash\{i, j\}$ that gives a configuration for which

$$
w_{i j}<\binom{n-2}{2}
$$

So the equivalency claim holds.

Time complexity The identification takes time $\Omega\left(n^{4}\right)$, which is only reasonable for small instances.

2.2 Version 2

A more efficient algorithm for cherry identification is desirable. One might consider using the following idea:

$$
\operatorname{argmin}_{i, j} D(i, j)
$$

However this method only works for ultra-metric trees e.g. when time is used as edge lengths. It is incorrect in the general case since for certain instances the distance between leaves can be misguiding.

3 Neighbor Joining (NJ)

- Let $S_{D}(i, j)=(n-2) D(i, j)-\sum_{k}(D(i, k)+D(j, k))$
- Identify sibling leafs
- i.e. take $\operatorname{argmin}_{i \cdot j} S_{D}(i, j)$
- Reduce i, j to a "new leaf" a with distances

$$
-D(a, x)=(D(i, x)+D(j, x)) / 2
$$

- Call NJ recursively on the new matrix
- Add i and j below a in the tree returned
- See figure 4-6

Time complexity $O\left(n^{3}\right)$, for an $n \times n$ distance matrix D.

Figure 4: The tree T

Figure 5: A cherry

3.1 The Proof

- See figures 7 and 8
- Reduce i, j to new taxa a: $E(a, x) \leftarrow(D(i, x)+D(j, x)) / 2$
- $l_{S}(a, b) \leftarrow l_{T}(b, a)+\left(l_{T}(a, i)+l_{T}(a, j)\right) / 2$
- $d_{S}(x, a)$
$=d_{S}(x, b)+l_{T}(b, a)+\left(l_{T}(a, i)+l_{T}(a, j)\right) / 2$
$=d_{T}(x, b)+l_{T}(b, a)+\left(l_{T}(a, i)+l_{T}(a, j)\right) / 2$
$=D(x, b)+(l(b, i)+l(b, j)) / 2$
$=(D(x, i)+D(x, j)) / 2$

Figure 6: The tree S

Figure 7: NJ - The proof

Figure 8: NJ - The proof (continued)

