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Chapter 1

Lecture 10

1.1 Algorithm for the Small ML Problem

We abstract ”away” the model and use trees with edges labeled with transition
matrices. Following is an example of a transition matrix

A C G T
1/2 1/6 1/6 1/6
1/6 1/2 1/6 1/6
1/6 1/6 1/2 1/6
1/6 1/6 1/6 1/2

HQAQ

Input a leaf labeled tree T\, a root distinction p and for each edge e a tran-
sition matrix M (e)

Output the probability that T, p, M generates [, i.e. Pr[l|T, p, M]

We have
Pr{l|T, p, M] = > Prl'|T, p, M]
'=U(T)— X%
UVL(T) =1

Idea conditioning and dynamic programming

In this problem positions are independent and identically distributed, so we
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can compute the probability of one position at a time and then multiply those

P(T,M,0,¢) = > Prl'|T, p, M]
I'=V(T)— %
VIL(T) =1

U(root(T)) = o

root
O o with prob. p(o)

] )

Figure 1.1: A tree

Let us define the counter
c(u, U) = P(Tua M|E(Tu)a a, lIL(Tu))
Now we do a recursion for ¢

e For V € L(T) (base case)

C(U’U)_{ 1 ifo=pu)

0 otherwise

e For u € U(T)\L(T) (internal vertex u), summing over mutually exclusive
events that cover the entire space

c(w,0) = Y [M,0)0q,c(v,00)M(u,w)e0, c(w, o))

Oy, 0wED

We write this as separate sum for faster computation

c(u,0) = <Z M(u,v)w/c(v,o’)> (Z M(u,w)m/c(u),o”)>

o’'ey o’'ey
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Figure 1.2: Probability computations

Final answer is given by

Prll|T, p, M] = Z p(c) — c(root(T), o)
ocey

Time complexity is given as below
e Time complexity for one position O(|v(T)||%]?)

e Time complexity for m positions O(|v(T)||3[*m)

1.2 Algorithm for the Medium ML Problem

Framework
e A rooted tree T with edge lengths A and leaf labeling .
e An alphabet X.

e A model gives a mapping M : RT to |X| x |X| -matrices (i.e. transitions
matrices)

so for an edge e, M(A(e)) is its transition matrix.
We know how to compute Pr[l|T, ]
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Figure 1.3: Rooted subtrees

Medium ML-problem
Input a leaf labeled tree T 1.
Output edge lengths A\ that maximize Pr[l|T, \].

Heuristic
1. Pick reasonable or random initial edge lengths
2. Until no edge length is altered
(a) pick an edge e
(b) Modify A(e) such that

Prl|T, ] is maximized

How do we perform (b)? Notice our models are reversible and, therefore,
we can use any vertex as the root (see figures 1.4, 1.5 and 1.6).

Assume that e = (u,v). Then:
1. Make u the root. Let T" be T'\ T, (see 1.6).

2. For each position i and ¢ € ¥ compute the probability for ¢ in position ¢
in T and o in position ¢ in T, (see 1.6).

3. Optimize A(e) without recomputing anything in 7" or T, using a more
or less advanced numerical optimization procedure.
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Figure 1.4: Tree with node no. 1 as root (see figure 1.5)

1.3 Algorithm for the Big ML Problem

Input Sequences s1,...,s, all of length m.

Output A leaf labeled tree T, (labeled with s1,...,s,) and edge lengths A
that maximize Pr[l|T, \] among all such T, 1, A.
Heuristic

1. Let 7,1, A be the result of applying “the medium algorithm” to the NI
tree or a random tree.

2. Until no better trees are found:

For every edge e:

(a) Do a branch swap (see figure 1.7) to get a possibly better tree.

(b) Optimize edge lengths. First for a,b,c,d and e, then the rest of the
edges.

3. We let the best tree T¢, ., Ac be the current tree and continue.
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Figure 1.5: Tree with node no. 2 as root (see figure 1.4)

Figure 1.6: Changing root: tree with root u and a subtree with root v, we may
now select v as root for the tree when u will become root of a subtree (see figures
1.4 and 1.5)
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Figure 1.7: Branch Swap



