
Algorithmic Bioinformatics DD2450, spring 2010,

Lecture 12

Lecturer Jens Lagergren
Several current and previous students

will be acknowledged in a separate document.

May 22, 2010

Chapter 1

Lecture 10

1.1 Algorithm for the Small ML Problem

We abstract ”away” the model and use trees with edges labeled with transition
matrices. Following is an example of a transition matrix

A C G T
A
C
G
T


1/2 1/6 1/6 1/6
1/6 1/2 1/6 1/6
1/6 1/6 1/2 1/6
1/6 1/6 1/6 1/2


Input a leaf labeled tree T, l, a root distinction ρ and for each edge e a tran-
sition matrix M(e)

Output the probability that T, ρ, M generates l, i.e. Pr[l|T, ρ, M]

We have
Pr[l|T, ρ, M] =

∑
l′ = U(T) → Σ

l′|L(T) = l

P r[l′|T, ρ, M]

Idea conditioning and dynamic programming

In this problem positions are independent and identically distributed, so we

1

1.1. ALGORITHM FOR THE SMALL ML PROBLEM

can compute the probability of one position at a time and then multiply those

P (T,M, σ, e) =
∑

l′ = V (T) → Σ
l′|L(T) = l

l′(root(T)) = σ

Pr[l′|T, ρ, M]

Figure 1.1: A tree

Let us define the counter

c(u, σ) = P (Tu,M |E(Tu), σ, l|L(Tu))

Now we do a recursion for c

• For V ∈ L(T) (base case)

c(u, σ) =
{

1 if σ = ρ(u)
0 otherwise

• For u ∈ U(T)\L(T) (internal vertex u), summing over mutually exclusive
events that cover the entire space

c(u, σ) =
∑

σv,σw∈Σ

[M(u, v)σσvc(v, σv)M(u, w)σσwc(w, σw)]

We write this as separate sum for faster computation

c(u, σ) =

(∑
σ′∈Σ

M(u, v)σσ′c(v, σ′)

)(∑
σ′∈Σ

M(u, w)σσ′c(w, σ′)

)

2

1.2. ALGORITHM FOR THE MEDIUM ML PROBLEM

Figure 1.2: Probability computations

Final answer is given by

Pr[l|T, ρ, M] =
∑
σ∈Σ

ρ(σ)− c(root(T), σ)

Time complexity is given as below

• Time complexity for one position O(|v(T)||Σ|2)

• Time complexity for m positions O(|v(T)||Σ|2m)

1.2 Algorithm for the Medium ML Problem

Framework

• A rooted tree T with edge lengths λ and leaf labeling l.

• An alphabet Σ.

• A model gives a mapping M : R+ to |Σ| × |Σ| -matrices (i.e. transitions
matrices)

so for an edge e, M(λ(e)) is its transition matrix.
We know how to compute Pr[l|T, λ]

3

1.2. ALGORITHM FOR THE MEDIUM ML PROBLEM

Figure 1.3: Rooted subtrees

Medium ML-problem

Input a leaf labeled tree T, l.

Output edge lengths λ that maximize Pr[l|T, λ].

Heuristic

1. Pick reasonable or random initial edge lengths

2. Until no edge length is altered

(a) pick an edge e

(b) Modify λ(e) such that

Pr[l|T, λ] is maximized

How do we perform (b)? Notice our models are reversible and, therefore,
we can use any vertex as the root (see figures 1.4, 1.5 and 1.6).

Assume that e = (u, v). Then:

1. Make u the root. Let Tu be T \ Tv (see 1.6).

2. For each position i and σ ∈ Σ compute the probability for σ in position i
in Tu and σ in position i in Tv (see 1.6).

3. Optimize λ(e) without recomputing anything in Tu or Tv, using a more
or less advanced numerical optimization procedure.

4

1.3. ALGORITHM FOR THE BIG ML PROBLEM

Figure 1.4: Tree with node no. 1 as root (see figure 1.5)

1.3 Algorithm for the Big ML Problem

Input Sequences s1, . . . , sn all of length m.

Output A leaf labeled tree T, l (labeled with s1, . . . , sn) and edge lengths λ
that maximize Pr[l|T, λ] among all such T, l, λ.

Heuristic

1. Let T, l, λ be the result of applying “the medium algorithm” to the NI
tree or a random tree.

2. Until no better trees are found:

For every edge e:

(a) Do a branch swap (see figure 1.7) to get a possibly better tree.

(b) Optimize edge lengths. First for a, b, c, d and e, then the rest of the
edges.

3. We let the best tree Te, le, λe be the current tree and continue.

5

1.3. ALGORITHM FOR THE BIG ML PROBLEM

Figure 1.5: Tree with node no. 2 as root (see figure 1.4)

Figure 1.6: Changing root: tree with root u and a subtree with root v, we may
now select v as root for the tree when u will become root of a subtree (see figures
1.4 and 1.5)

6

1.3. ALGORITHM FOR THE BIG ML PROBLEM

Figure 1.7: Branch Swap

7

