Algorithmic Bioinformatics DD2450, spring 2010,
Lecture 12

Lecturer Jens Lagergren
Several current and previous students
will be acknowledged in a separate document.

May 22, 2010

Chapter 1

Lecture 10

1.1 Algorithm for the Small ML Problem

We abstract ”away” the model and use trees with edges labeled with transition
matrices. Following is an example of a transition matrix

A C G T
1/2 1/6 1/6 1/6
1/6 1/2 1/6 1/6
1/6 1/6 1/2 1/6
1/6 1/6 1/6 1/2

HQAQ

Input a leaf labeled tree T\, a root distinction p and for each edge e a tran-
sition matrix M (e)

Output the probability that T, p, M generates [, i.e. Pr[l|T, p, M]

We have
Pr{l|T, p, M] = > Prl'|T, p, M]
'=U(T)— X%
UVL(T) =1

Idea conditioning and dynamic programming

In this problem positions are independent and identically distributed, so we

1.1. ALGORITHM FOR THE SMALL ML PROBLEM

can compute the probability of one position at a time and then multiply those

P(T,M,0,¢) = > Prl'|T, p, M]
I'=V(T)— %
VIL(T) =1

U(root(T)) = o

root
O o with prob. p(o)

])

Figure 1.1: A tree

Let us define the counter
c(u, U) = P(Tua M|E(Tu)a a, lIL(Tu))
Now we do a recursion for ¢

e For V € L(T) (base case)

C(U’U)_{ 1 ifo=pu)

0 otherwise

e For u € U(T)\L(T) (internal vertex u), summing over mutually exclusive
events that cover the entire space

c(w,0) = Y [M,0)0q,c(v,00)M(u,w)e0, c(w, o))

Oy, 0wED

We write this as separate sum for faster computation

c(u,0) = <Z M(u,v)w/c(v,o’)> (Z M(u,w)m/c(u),o”)>

o’'ey o’'ey

1.2. ALGORITHM FOR THE MEDIUM ML PROBLEM

JX /K
/RN

Figure 1.2: Probability computations

Final answer is given by

Prll|T, p, M] = Z p(c) — c(root(T), o)
ocey

Time complexity is given as below
e Time complexity for one position O(|v(T)||%]?)

e Time complexity for m positions O(|v(T)||3[*m)

1.2 Algorithm for the Medium ML Problem

Framework
e A rooted tree T with edge lengths A and leaf labeling .
e An alphabet X.

e A model gives a mapping M : RT to |X| x |X| -matrices (i.e. transitions
matrices)

so for an edge e, M(A(e)) is its transition matrix.
We know how to compute Pr[l|T,]

1.2. ALGORITHM FOR THE MEDIUM ML PROBLEM

u Ou u Ou

Figure 1.3: Rooted subtrees

Medium ML-problem
Input a leaf labeled tree T 1.
Output edge lengths A\ that maximize Pr[l|T, \].

Heuristic
1. Pick reasonable or random initial edge lengths
2. Until no edge length is altered
(a) pick an edge e
(b) Modify A(e) such that

Prl|T,] is maximized

How do we perform (b)? Notice our models are reversible and, therefore,
we can use any vertex as the root (see figures 1.4, 1.5 and 1.6).

Assume that e = (u,v). Then:
1. Make u the root. Let T" be T'\ T, (see 1.6).

2. For each position i and ¢ € ¥ compute the probability for ¢ in position ¢
in T and o in position ¢ in T, (see 1.6).

3. Optimize A(e) without recomputing anything in 7" or T, using a more
or less advanced numerical optimization procedure.

1.3. ALGORITHM FOR THE BIG ML PROBLEM

Figure 1.4: Tree with node no. 1 as root (see figure 1.5)

1.3 Algorithm for the Big ML Problem

Input Sequences s1,...,s, all of length m.

Output A leaf labeled tree T, (labeled with s1,...,s,) and edge lengths A
that maximize Pr[l|T, \] among all such T, 1, A.
Heuristic

1. Let 7,1, A be the result of applying “the medium algorithm” to the NI
tree or a random tree.

2. Until no better trees are found:

For every edge e:

(a) Do a branch swap (see figure 1.7) to get a possibly better tree.

(b) Optimize edge lengths. First for a,b,c,d and e, then the rest of the
edges.

3. We let the best tree T¢, ., Ac be the current tree and continue.

1.3. ALGORITHM FOR THE BIG ML PROBLEM

Figure 1.5: Tree with node no. 2 as root (see figure 1.4)

Figure 1.6: Changing root: tree with root u and a subtree with root v, we may
now select v as root for the tree when u will become root of a subtree (see figures
1.4 and 1.5)

1.3. ALGORITHM FOR THE BIG ML PROBLEM

w

o
o

gives

Figure 1.7: Branch Swap

