Algorithmic Bioinformatics DD2450, spring 2010, Lecture 12

Lecturer Jens Lagergren Several current and previous students will be acknowledged in a separate document.

May 22, 2010

Chapter 1

Lecture 10

1.1 Algorithm for the Small ML Problem

We abstract "away" the model and use trees with edges labeled with transition matrices. Following is an example of a transition matrix

	A	C	G	T
Α	(1/2)	1/6	1/6	1/6
C	1/6	1/2	1/6	1/6
G	1/6	1/6	1/2	1/6
T	1/6	1/6	1/6	1/2 /

Input a leaf labeled tree T, l, a root distinction ρ and for each edge e a transition matrix M(e)

Output the probability that T, ρ, M generates l, i.e. $Pr[l|T, \rho, M]$

We have

$$Pr[l|T, \rho, M] = \sum_{\substack{l' = U(T) \to \Sigma \\ l'|L(T) = l}} Pr[l'|T, \rho, M]$$

Idea conditioning and dynamic programming

In this problem positions are independent and identically distributed, so we

can compute the probability of one position at a time and then multiply those

$$P(T, M, \sigma, e) = \sum_{\substack{l' = V(T) \to \Sigma \\ l' | L(T) = l \\ l'(\operatorname{root}(T)) = \sigma}} Pr[l' | T, \rho, M]$$

Figure 1.1: A tree

Let us define the counter

$$c(u,\sigma) = P(T_u, M|_{E(T_u)}, \sigma, l|_{L(T_u)})$$

Now we do a recursion for c

• For $V \in L(T)$ (base case)

$$c(u,\sigma) = \begin{cases} 1 & \text{if } \sigma = \rho(u) \\ 0 & \text{otherwise} \end{cases}$$

• For $u \in U(T) \setminus L(T)$ (internal vertex u), summing over mutually exclusive events that cover the entire space

$$c(u,\sigma) = \sum_{\sigma_v, \sigma_w \in \Sigma} [M(u,v)_{\sigma\sigma_v} c(v,\sigma_v) M(u,w)_{\sigma\sigma_w} c(w,\sigma_w)]$$

We write this as separate sum for faster computation

$$c(u,\sigma) = \left(\sum_{\sigma' \in \Sigma} M(u,v)_{\sigma\sigma'} c(v,\sigma')\right) \left(\sum_{\sigma' \in \Sigma} M(u,w)_{\sigma\sigma'} c(w,\sigma')\right)$$

Figure 1.2: Probability computations

Final answer is given by

$$Pr[l|T, \rho, M] = \sum_{\sigma \in \Sigma} \rho(\sigma) - c(\operatorname{root}(T), \sigma)$$

Time complexity is given as below

- Time complexity for one position $O(|v(T)||\Sigma|^2)$
- Time complexity for m positions $O(|v(T)||\Sigma|^2m)$

1.2 Algorithm for the Medium ML Problem

Framework

- A rooted tree T with edge lengths λ and leaf labeling l.
- An alphabet Σ .
- A model gives a mapping $M:R^+$ to $|\Sigma|\times |\Sigma|$ -matrices (i.e. transitions matrices)

so for an edge e, $M(\lambda(e))$ is its transition matrix. We know how to compute $\Pr[l|T, \lambda]$

Figure 1.3: Rooted subtrees

Medium ML-problem

Input a leaf labeled tree T, l.

Output edge lengths λ that maximize $\Pr[l|T, \lambda]$.

Heuristic

- 1. Pick reasonable or random initial edge lengths
- 2. Until no edge length is altered
 - (a) pick an edge e
 - (b) Modify $\lambda(e)$ such that

```
\Pr[l|T,\lambda] is maximized
```

How do we perform (b)? Notice our models are reversible and, therefore, we can use any vertex as the root (see figures 1.4, 1.5 and 1.6).

Assume that e = (u, v). Then:

- 1. Make u the root. Let T^u be $T \setminus T_v$ (see 1.6).
- 2. For each position i and $\sigma \in \Sigma$ compute the probability for σ in position i in T^u and σ in position i in T_v (see 1.6).
- 3. Optimize $\lambda(e)$ without recomputing anything in T^u or T_v , using a more or less advanced numerical optimization procedure.

Figure 1.4: Tree with node no. 1 as root (see figure 1.5)

1.3 Algorithm for the Big ML Problem

Input Sequences s_1, \ldots, s_n all of length m.

Output A leaf labeled tree T, l (labeled with s_1, \ldots, s_n) and edge lengths λ that maximize $\Pr[l|T, \lambda]$ among all such T, l, λ .

Heuristic

- 1. Let T,l,λ be the result of applying "the medium algorithm" to the NI tree or a random tree.
- 2. Until no better trees are found:

For every edge e:

- (a) Do a branch swap (see figure 1.7) to get a possibly better tree.
- (b) Optimize edge lengths. First for a, b, c, d and e, then the rest of the edges.
- 3. We let the best tree T_e, l_e, λ_e be the current tree and continue.

Figure 1.5: Tree with node no. 2 as root (see figure 1.4)

Figure 1.6: Changing root: tree with root u and a subtree with root v, we may now select v as root for the tree when u will become root of a subtree (see figures 1.4 and 1.5)

Figure 1.7: Branch Swap