
Algorithmic Bioinformatics DD2450, spring 2010,

Lecture 2

Lecturer Jens Lagergren
Several current and previous students

will be acknowledged in a separate document.

April 5, 2010

1 Pairwise sequence alignment

Sequence alignment is one of the oldest problems in bioinformatics and considers
the problem of describing similarities between two or more sequences. Multiple
sequence alignment and genomic alignment are two other common types of
sequence alignment.

Sequence alignment has a broad range of applications in bioinformatics. Here
are three examples of such applications:

Similarity distances for phylogeny
By measuring the amount of mutations between two genes from a pair of
species the evolutionary distance between them can be estimated. Such
distance estimates for all pairs from a set of species can be used to con-
struct a phylogenic tree of them.

Searching for a gene from a new genome
When finding a gene in a new genome it may be interesting to see if that
gene exists in other already sequenced species.

Aligning genomes as a first step in comparative studies
By aligning two different genomes, regions of interest may be found. As
an example, regions where the two genomes are particularly similar are
interesting to study, since they often contain elements which are conserved
because of their importance to the species.

1.1 Global alignment

In global alignment two DNA sequences are aligned in their full length ignoring
the physical structure of the DNA. The evolutionary events taken into account
are base substitutions and insertions/deletions (indels). Such mutations can
occur for instance through errors made by the DNA polymerase or the cell’s

1

repair machinery. The sequences will be strings over the alphabet {A,T,G,C,-}.
The blank symbol, -, is needed to represent insertions and deletions. Sometimes
alignment of protein sequences might be preferred since codons may change and
still encode the same protein.

Definition 1. The support of a sequence S ∈ {A,T,G,C,-}∗ is S with all blank
symbols deleted.

Definition 2. An alignment of two sequences X, Y ∈ {A,T,G,C}∗ is a 2 × k
matrix Π such that

1. the support of Π1,1, . . . ,Π1,k is X

2. the support of Π2,1, . . . ,Π2,k is Y

3. ∀i : ¬ (Π1,i = - ∧ Π2,i = -)

The first two requirements say that the first and the second row of the matrix
Π consists of the sequences X and Y respectively, possibly with some blank
symbols inserted. The third and final requirement guarantees that no column
in Π consists of two blank symbols. This implies that the width k of the matrix
Π is at most the sum of the lengths of X and Y .

Example 1. Given two homologous sequences X and Y with

X = GATTAC

Y = GCCTAAC

a possible alignment Π of X and Y is

Π =
[
GAT-TA-C

G-CCTAAC

]
Notation 1. The following alternative notation for an alignment is used
Π =< Π1,1,Π2,1 >, . . . , < Π1,|Π|,Π2,|Π| > and Πi =< Π1,i,Π2,i >.

1.2 Score

Two sequences can be aligned in more than one way. To be able to determine
how good a certain alignment is a similarity function s : {A,C,G,T,-}2 7→ R is
introduced. The value of s(a, b) should be higher the more likely it is for a to
mutate into b.

Definition 3. The score, σ, of an alignment, Π, is defined as

σ(Π) =
|Π|∑
i=1

s(Π1,i,Π2,i).

Definition 4. The optimal global alignment score, γ, of two sequences X and
Y is the highest possible score for all alignments, Π, of X and Y .

γ(X, Y) = maxσ(Π).

2

1.3 Dynamic programming solution to the global align-
ment problem

Global alignment can be formulated as a computational problem in the following
manner

Input: Two homologous sequences X = x1, . . . , xm and Y = y1, . . . , yn with
common ancestor Z where X, Y , Z ∈ {A,T,G,C}∗.

Output: Pairs of positions in X and Y that descend from the same position in
Z.

Observations

1. If Π, where |Π|=k, is an optimal alignment of Xi and Y j then one of
following holds

(a) Πk = 〈xi, yj〉 and Πk−1 is an optimal alignment of Xi−1 and Y j−1.
(b) Πk = 〈xi, -〉 and Πk−1 is an optimal alignment of Xi−1 and Y j .
(c) Πk = 〈-, yj〉 and Πk−1 is an optimal alignment of Xi and Y j−1.

2. Let the matrix g(i, j) = γ(Xi, Y j) represent the optimal global alignment
score of Xi and Y j then g(i, j) can be computed recursively as

g(i, j) = max

 g(i− 1, j − 1) + s(xi, yj)
g(i− 1, j) + s(xi,−)
g(i, j − 1) + s(−, yj)

3. Aligning a prefix Xk of X to k gaps gives a score of
∑k

r=0 s(xr, -)

g(0, 0) = 0
∀i > 0 : g(i, 0) =

∑i
r=0 s(xr, -)

∀j > 0 : g(0, j) =
∑j

r=0 s(-, yr)

4. Computing g(i, j) requires the values g(i−1, j−1), g(i−1, j) and g(i, j−1).
They will always be available if each row is computed from left to right
starting at g(1, 1).

5. The optimal global aligning score is the value at g(m,n). By using back-
pointers describing which of the three cases that led to the value in each
element g(i, j), it is also possible to extract the corresponding alignment
that gives the optimal score.

Complexity of the algorithm

Time: O(mn), since there are (m+1)(n+1) cells and each is computed in
constant time.

Memory: O(mn), since each cell uses constant memory. To get only the max-
imum score for all alignments the memory complexity can be reduced to
O(min(m,n)) by saving only the previous line of the matrix g(i, j).

3

Algorithm 1 Optimal global alignment of two sequences using dynamic pro-
gramming
Input: Strings X and Y of length m and n respectively.
Output: Optimal global alignment of X and Y .

// Initialize base cases
G[0, 0] = 0
for i = 1 to m do

G[i, 0] = G[i− 1, 0] + s(X[i], -)
B[i, 0] = ↑

end for
for j = 1 to n do

G[0, j] = G[0, j − 1] + s(-, Y [j])
B[0, j] =←

end for
// Compute optimal values for other cases, save backtrack information
for i = 1 to m do

for j = 1 to n do
G[i, j] = G[i− 1, j − 1] + s(X[i], Y [j])
B[i, j] =↖
if G[i, j − 1] + s(-, Y [j]) > G[i, j] then

G[i, j] = G[i, j − 1] + s(-, Y [j])
B[i, j] =←

end if
if G[i− 1, j] + s(X[i], -) > G[i, j] then

G[i, j] = G[i− 1, j] + s(X[i], -)
B[i, j] = ↑

end if
end for

end for
// Construct optimal solution
OGA = ∅
i = m
j = n
while (i, j) 6= (0, 0) do

if B[i, j] =↖ then
prepend 〈X[i], Y [j]〉 to OGA
(i, j) = (i− 1, j − 1)

else if B[i, j] =← then
prepend 〈-, Y [j]〉 to OGA
(i, j) = (i, j − 1)

else
prepend 〈X[i], -〉 to OGA
(i, j) = (i− 1, j)

end if
end while
return OGA

4

