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Chapter 1

Pairwise sequence
alignment cont.

1.1 Introduction

1.2 Global Alignment with Affine Gap Penalty

1.2.1 Slippage and Affine Gap

In alignments (DNA, RNA, and proteins), missing nucleotides often occur in
consecutively groups called gaps. This is because, evolution frequently deletes
or inserts “entire substrings” as a unit, as opposed to deleting or inserting
individual nucleotides. When observing a gap it is natural to ask whether several
consecutive nucleotides have been removed in one of sequence or if several new
nucleotides have been added consecutively to the other sequences. In fact it is
impossible for us to tell the difference between these two cases and therefore
they are both refereed to as indels.
One mechanism that can introduce gaps in alignments is so called slippage in
which DNA polymerase makes a mistake during the replication of DNA by not
traversing a loop or by traversing it twice, see Figure 1.1.
Until now we have assumed that s(A,−) = s(T,−) = s(C,−) = s(G,−) = p,
for some penalty p. In global alignment with affine gap penalty, we change
our model slightly to cover slippage (and similar effects). We introduce two
new penalties; one penalty for opening a new gap (cost d), and one penalty for
extending an existing gap (cost e). Normally, the penalty for opening a new
gap opening is greater than extending an existing gap. The two penalties are
regarded as negative values, hence we have (d < e < 0), and this type of gap
cost is called affine.

1
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Figure 1.1: Illustration of slippage. Sometimes a loop occurs in the sequence.
Here it is possible that the loop is copied exactly once during mutations, which
results no change in the sequence. It is possible that the loop is not copied at
all which results in a deletion and that the loop is copied two which results in
duplication.

Example Given the sequences GTAG and GTTTC a possible alignment is:

GT--AG
GTTT-C

The first, upper sequence contains one gap opening and one gap extension while
the second sequence contains one gap opening. Using affine gap cost the score
for this alignment is:

σ = s(G, G) + s(T, T) + d + e + d + s(G, C)

Note that the alignment in the example is considered to have two gaps, not a
single 3-position wide gap. However, it is worth mentioning that some algo-
rithms for local aligning in fact considers a series of consecutive positions with
indels to be one large gap even if all blank symbols do not appear in the same
sequence.

1.2.2 Definitions

Input: Two homologous sequences X = x1, . . . , xm and Y = y1, . . . , yn.

Output: The alignment score γ(X,Y) (and possibly the corresponding align-
ment).

Definition 1. Let

1. g(i, j) = optimal score of Xi and Y j when xi and yj are matched

2. gx(i, j) = optimal score of Xi and Y j when the last position in Xi

is matched with a blank symbol

3. gy(i, j) = optimal score of Xi and Y j when the last position in Y j

is matched with a blank symbol
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1.2.3 Dynamic programming procedure

The global aligning with affine gap penalty is also a recursive procedure that can
be solved efficiently by means of dynamic programming. With similar reasoning
as earlier the recursions for the new matrices defined above can be derived as:

g(i, j) = max

 g(i− 1, j − 1) + s(xi, yj)
gx(i− 1, j − 1) + s(xi, yj)
gy(i− 1, j − 1) + s(xi, yj)

gx(i, j) = max

 g(i− 1, j) + d
gy(i− 1, j) + d
gx(i− 1, j) + e

gy(i, j) = max

 g(i, j − 1) + d
gx(i, j − 1) + d
gy(i, j − 1) + e

The optimal global alignment score is now given by max{g(m,n), gx(m,n), gy(m,n)}.
The alignment that corresponds to the optimal score can be extracted in the
same way as before using back-pointers.
A set of base cases is needed for each matrix for the computation of its first row
and its first column. Since three matrices are computed, three sets of base cases
are needed. These are:

g(0, 0) = 0
g(i, 0) = −∞ 1 ≤ i ≤ m
g(0, j) = −∞ 1 ≤ j ≤ n

gx(i, 0) = −∞ 0 ≤ i ≤ m
gx(0, j) = d + (j − 1)e 1 ≤ j ≤ n

gy(i, 0) = d + (i− 1)e 1 ≤ i ≤ m
gy(0, j) = −∞ 0 ≤ j ≤ n

Algorithm complexity

Time: O(nm).
Three (n + 1) × (m + 1)-matrices are computed. A constant amount of
work is needed for each matrix element.

Memory usage for the optimal alignment matrix using back-pointers: O(mn).

Memory usage for the optimal score only: O(min(m,n))
Only the previous and the current row of each matrix are needed in mem-
ory when the corresponding alignment is unimportant.
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1.3 Motivation for additive score

Using an additive score may at first not seem like a natural or even good choice.
A motivation for why it is sound to use an additive score is therefore needed.

We make the following two simplifying assumptions:

• Sequences have no gaps

• The positions are independent

Let X = x1, . . . , xn and Y = y1, . . . , yn be two sequences of the same length.
We have two different models for these sequences. The first model is the random
model R, where X and Y are not homologous (i.e. no common ancestor to X
and Y ). Under this model the probability of observing an individual nucleotide
is given by nucleotide probabilities qA, qT , qC and qG. The probability of
observing X and Y under this model is:

Pr[X, Y |R] =
n∏

i=1

qxi

n∏
i=1

qyi

The second model is the homology model H, where X and Y in fact have
a common ancestor. Under this model the probability of obsering two nu-
cleotides in the same position in X and Y is given by a pairwise probability:
pA,A, pA,T , . . . , pG,G, respectively. The probability of obsering X and Y under
this model is:

Pr[X, Y |H] =
n∏

i=1

pxi,yi

Let us consider the ratio between these two likelihoods:

Pr[X, Y |H]
Pr[X, Y |R]

=
∏n

i=1 pxi,yi∏n
i=1 qxi

∏n
i=1 qyi

=
n∏

i=1

pxi,yi

qxiqyi

By taking the logarithm of this ratio we get:

n∑
i=1

log
pxi,yi

qxiqyi

From this expression we conclude that additive score is in fact OK, if we define
our similarity function s as

s(x, y) = log
px,y

qxqy

Now the question arises how we can estimate PNN ′ and qN . This is a bioinfor-
matics problem rather than a mathematical problem. We have no mathematical
solution for this. We can approximate or measure this by measuring real mu-
tations and count by observation. For this purpose, we take the “so-called”
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“trusted” alignments of pairs on the same distance, i.e. we take the aligned
sequences that we can “trust”, all on same distance, say the pairs of sequence
that agree in 99% of all positions. Now, let

ANN ′ = #N,N ′mutation pairs

BN = #N in the sequences

PNN ′ =
ANN ′∑

NN ′ ANN ′

qN =
BN∑
N ′ BN ′

Then we extrapolate to other distances. Example of such matrices are PAM,
BLOSSOM, etc.
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