
Algorithmic Bioinformatics DD2450, spring 2010,

Lecture 4

Lecturer Jens Lagergren
Several current and previous students

will be acknowledged in a separate document.

April 18, 2010

1 Local Alignment

When aligning two sequences using local alignment only smaller parts of the
sequences are considered.

1.1 Motivation

Local alignment is preferred over global alignment in certain applications:

• Local alignment of two multidomain protein can find common domains.

• Homologous but distant proteins may have diverged a lot and may only
share a motif.

• Upstream regions of non-homologous genes can share regulatory elements,
but nothing else.

1.2 Defintion

The term substring is used for the smaller parts of the sequences. A substring
is simply a subset of the consecutive symbols in a string with the order of the
symbols preserved.

Notation 1. X ′ ⊆ X means X ′ is a substring of X.

Input: Two sequences X and Y .

Output: Optimal local alignment score of X and Y .

The local optimal aligning score, λ, is the maximum global alignment score over
all substrings. More formally, the local optimal aligning score of two sequences
X and Y , with γ defined as earlier, is:

1

1.3 Dynamic programming procedure

λ(X, Y) = max
X′⊆X

Y ′⊆Y

γ(X ′, Y ′)

1.3 Dynamic programming procedure

Definition 1. An (i, j)-local alignment is a global alignment of xi′ ,. . . ,xi and
yj′ ,. . . ,yj, for some i′ < i, j′ < j.

Let l(i, j) be the maximum score, with linear gap cost, over all (i, j)-local align-
ments π of X and Y . By again looking at the last column of an alignment π,
we derive the recursion for l:

l(i, j) = max

l(i− 1, j − 1) + s(xi, yj)
l(i− 1, j)− d
l(i, j − 1)− d
0

The base cases are:

l(0, 0) = 0 .

l(−1, j) = l(i,−1) = 0, ∀i,j

Unlike the case with global alignings, the optimal local aligning score is not
guaranteed to be in a certain element of the computed matrix. Finding the
optimal score requires a complete search for the maximum value of l. By using
back-pointers, starting from the element with the maximum value, it is also
possible to get the alignment corresponding to the optimal score.

Algorithm complexity

Time: O(nm).
A constant amount of work is needed for each matrix element.

Memory usage for the optimal alignment matrix using back-pointers: O(mn).

Memory usage for the optimal score only: O(min(m,n))
Only the previous and the current row of l are needed in memory.

2 Global alignment with linear gap cost in linear
memory

We will now present an algorithm for optimal alignment with memory com-
plexity O(n + m). Our earlier algorithms for computing alignment score has a
memory complexity of O(min(n, m)). If we are also interested in getting the
optimal alignment the memory requirements has been Θ(nm). When aligning
large DNA-strings, memory problems are more sever than time problems.

2

2.1 Dynamic programming solution

2.1 Dynamic programming solution

Input: X = x1 . . . xm and Y = y1 . . . yn. (the usual sequences)
Assume for simplicity that m is divisible by 2. We can view an alignment
as a path in a a weighted graph. A path from (0, 0) to (m,n) in the graph
corresponds to an alignment. We can represent an alignment path as a list of
ordered pairs:

< 0, 0 >=< s1, t1 >, . . . , < sp, tp >=< n,m >

where si+1 = si + δ and ti+1 = ti + δ′ for δ, δ′ ∈ {0, 1} and δ + δ′ ≥ 1.
We now define the paths passage as the ti such that Si = m

2 . If an alignment
path contains several pairs < m

2 , ti >, we choose a passage such that ti has the
highest index i.

Observation: There is a 1-to-1 correspondence between alignments and align-
ment paths.

Algorithm The idea is to use the passage for divide and conquer.
Input: X = x1, . . . , xm and Y = y1, . . . , yn.

1. If |X| = 1 or |Y | = 1, return an alignment π1, . . . , πk of X and Y (com-
puted in a straigthforward non-recursive way)

2. Compute the passage t for an optimal alignment path p

3. Align Xm/2 with Y p, which gives the optimal alignment path π1, . . . , πk

4. Align xm
2 +1, . . . , xm with yp+1, . . . , yn, which gives the optimal alignment

path π′1, . . . , π
′
k

5. Return the alignment of X and Y : π1, . . . , πk, π′1, . . . , π′k

A closer look at the passage (an illustration)

x1 yp

xm
2

↓↘

xm

We match to symbols whenever we use ↘. So positions in Xm/2 are only
matched to positions in Y p or blanks. And the other way around.
⇒ An optimal alignment can be obtained by concatenating an optimal align-
ment of Xm/2 and Y p with an optimal alignment of xm/2+1, . . . , xm and yp+1, . . . , yn.

3

2.1 Dynamic programming solution

Computing the passage in time O(nm) and space O(n + m)
Recursion for score(s) and passage(p)

g(i, j) = max

 g(i− 1, j − 1) + s(xi, yj)
g(i− 1, j)− d
g(i, j − 1)− d

A passage p(m,n), where p(i, j) is defined as:

p(i, j) =

0 if i < m
2

j if i = m
2

if i > m
2

p(i− 1, j − 1) if g(i, j) = g(i− 1, j − 1) + s(xi, yj)
p(i− 1, j) if g(i, j) = g(i− 1, j)− d
p(i, j − 1) if g(i, j) = g(i, j − 1)− d

Complexity We now analyze the time and space complexity of the entire
algorithm.

Memory Computing the passage p can be done in linear memory, because
when we compute g(i, j) and p(i, j) on row i we only need the values on the
preceding row and the already computed values on the current row. The length
of a row is n, which gives memory complexity O(n). We will compute a number
of passages (m − 1 if m = 2p for any p), but we only compute one passage at
the time so we can reuse the memory for each passage computation. Storing
the alignment requires O(n+m) memory. Assume inductively that the memory
required for a pair of sequences of length n′ and m′ is bounded by c(n′ + m′).

Step 1 space ≤ O(n)

Step 2 space ≤ O(m + n) i.e. c′(m + n) for constant c′

Step 3 space ≤ 1 + c(m
2 + p)

Step 4 space ≤ m
2 + p + c(m

2 + n− p) ≤ c(m + n)
when c > 1

Step 5 space ≤ c(m + n)

So the whole algorithm requires O(n + m).

Analysis of time complexity By induction: Assume that T (m′, n′) ≤ 2cn′m′,
when m′ + n′ < m + n. Then we get (for m > 1)

T (m,n) ≤ cnm + T (
m

2
, p) + T (

m

2
, n− p)

≤ cnm + 2c
m

2
p + 2c

m

2
(n− p)

= 2cnm.

4

Where the second inequality follows our inductive assumption. We conclusion
that T (m,n) ≤ 2cnm. So, the time complexity is O(nm).
Lets compare (2cnm) with the time required for the basic quadratic space algo-
rithm. The basic algorithm takes about the same time as computing the passage
(which takes time cnm). The algorithm for computing the global alignment in
linear memory thus takes about twice the time of the basic algorithm.

3 Multi alignment

In a multi alignment more than two sequences are compared. This alignment
contains more information than pairwise alignments. From the multi alignment
it is possible to construct a consensus sequence which can be used to recreate
what the ancestor to the original sequences looked like.

Exemple of pairwise alignment:
S1: ...AATGCG...
S2: ...ACCGCT...

Exemple of multi alignment:
S1: AATGCG
S2: ACCGCT
S3: AATCCT
Consensus: AATGCT

Applications:

• Database searches, create HMM

• First step in phylogeny

• Signal identification

Definition: A multialignment of sequences S1, . . . , Sr is a r × k matrix such
that:

• The support of row i is Si.

• No column contains only blank symbols.

Let |A| be the number of columns in A and let s : {A,C, G, T,−}2 → R be a
nucleotide similarity function.

Definition: Sum of Pairs (SP) score, σ, of A is defined as:

σ(A) =
|A|∑
i=1

∑
i≤j<k≤r

s(Aji, Aki)

5

where |A| = the number of columns in A.

γ(S1, . . . , Sr) = max
align. A of S1,...,Sr

σ(A)

Notation: For a string X = x1, . . . , xm

1. X≤i = X1, . . . , Xi

2. X>i = Xi+1, . . . , Xm

3. X>i,≤i+1 = Xi

4. X>i,≤i = −

Let
g(i1, . . . , ir) = γ(S≤i1

1 , . . . , S≤ir
r)

Recursion for g:

g(~0) = 0

g(i1, . . . , ir) = −∞, ∀i1, . . . , ir ∈ {−1, 0} such that
r∑

j=1

ij < 0

g(i1, . . . , ir) = min
δ1δr∈{0,1}r}\~0

g(i1 − δ1, . . . , ir − δr) +
∑

i≤j<k≤r

s(S>ij−δj≤ij

j , S>ik−δk≤ik

k)

Complexity:
Time: O(2rnr) since filling an element in the matrix takes time 2r and the
matrix has nr elements.
Space: O(nr) for score and alignment.

6

