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Multi alignment

In a multi alignment more than two sequences are compared. This alignment
contains more information than pairwise alignments. From the multi align-
ment it is possible to construct a consensus sequence which can be used to
recreate what the ancestor to the original sequences looked like.

Exemple of pairwise alignment:
S1: ...AATGCG...
S2: ...ACCGCT...

Exemple of multi alignment:
S1: AATGCG
S2: ACCGCT
S3: AATCCT
Consensus: AATGCT

Applications:

• Database searches, create HMM

• First step in phylogeny

• Signal identi�cation
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De�nition: A multialignment of sequences S1, . . . , Sr is an r×k-matrix A
such that:

• The support of row i is Si.

• No column contains only blank symbols.

Let |A| be the number of columns in A and let s : {A, C,G, T,−}2 → R
be a nucleotide similarity function.

De�nition: Sum of Pairs (SP) score, σ, of A is de�ned as:

σ(A) =

|A|∑
i=1

∑
i≤j<k≤r

s(Aji, Aki)

where |A| = the number of columns in A.

γ(S1, . . . , Sr) = max
align. A of S1,...,Sr

σ(A)

Notation: For a string X = x1, . . . , xm

1. X≤i = X1, . . . , Xi

2. X>i = Xi+1, . . . , Xm

3. X>i,≤i+1 = Xi

4. X>i,≤i = −

Let
g(i1, . . . , ir) = γ(S≤i1

1 , . . . , S≤ir
r )

Recursion for g:

g(~0) = 0

g(i1, . . . , ir) = −∞, ∀i1, . . . , ir ∈ {−1, 0} such that
r∑

j=1

ij < 0

g(i1, . . . , ir) = min
δ1δr∈{0,1}r}\~0

g(i1 − δ1, . . . , ir − δr) +
∑

i≤j<k≤r

s(S
>ij−δj≤ij
j , S>ik−δk≤ik

k )

Complexity:

Time: O(2rnr) since �lling an element in the matrix takes time 2r and the
matrix has nr elements.
Space: O(nr) for score and alignment.
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Progressive Alignments

Introduction

Some well known programs use progressive alignments, like ClustalW, muscle
and T-co�ee. Why use this type of alignment ?
The time complexity of dynamic programming for multialignments is Ω(nk)
for k sequences of length n. With more than 6 sequences to align, this be-
comes much too big.

For homologous sequences, a good starting point is to use the tree relating
the sequence and align the most similar sequences �rst.

In this �gure, you would �rst align human sequence with chimp sequence,
then align the resulting alignment with gorilla, and again with rhesus monkey.
Then we need to de�ne how to align alignments.
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Aligning Alignments

Notation:

• A = r × c alignment

• A′ = r′ × c′ alignment

• i− prefix = the i �rst columns

• A(,̇j) = the j − th column in A.

• For v = v1, v2, ..., vr and u = u1, u2, ..., ur

SP (u, v) is the sum of pairs score for v and u.

• e = r blanks = {−}r

• e′ = r' blanks = {−}r
′

De�nition:

An alignment of A and A′ is A′′ with r + r′ rows and:

• r �rst rows with eT removed is A

• r′ last rows with e′T removed is A′

• no columns contain only blanks

The score of A′′ is the sum
∑

Ccolumn

SP (C)

To �nd the best alignment, we need to compute g(i, j) = max score of
alignment of the i− prefix of A and the j − prefix of A′.

Recursion for g:

g(i, j) =


g(i− 1, j − 1) + SP (A(., i)T , A′(., j)T )

g(i− 1, j) + SP (A(., i)T , e′T )

g(i, j − 1) + SP (A′(., j)T , eT )

We also need to add the initialization case to complete the algorithm.

The time complexity of this alignment is O(c ∗ c′ ∗ r ∗ r′)
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Progressive Alignments

Notation for rooted tree T:

• r(T ) = the root

• V (T ) = the vertices

• E(T ) = the edges

• h(T ) = the leaves

Input: rooted tree and one DNA sequence for each leaf of the tree.
Output: One multialignment

Algorithm: visit vertices of T in postorder. When u with children v and w
is visited, s(u)← align(s(u), s(w)).
Time complexity: The worst case is really bad, but this algorithm is usually
fast.

Hidden Markov models and Bayesian statistics

Markov models

A descrete Markov model is a trippel M = {Q, A, qs} where

• Q is a set of states {q1, q2, ...}

• A = {aqq′ : q, q′ ∈ Q}

• qs is a start state

M generates a sequence of states {Π0, Π1, ...} where

• Π0 = qs

• P (Πi|Πi−1, ..., Π1) = P (Πi|Πi−1) = aΠi−1,Πi

A computer scientist often prefers to view a discrete Markov model as a
directed graph with edge costs that represent transition probabilities.
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Scenario

A casino uses a fair (F ) dice with probability 0.99 and a weighted (W ) with
probability 0.01.

• P (6|W ) = 1
2

• P (i|W ) = 1
2
for 1 ≤ i ≤ 5

Let A be the event that three 6 are observed consecutively. Which probability
is larger of these two dices? P (W |A) or P (F |A)?

Bayesian approach

• P (W |A) = P (A|W )P (W )
P (A)

• P (F |A) = P (A|F )P (F )
P (A)

Since comparing P (W |A) with P (F |A) we can remove the denominator from
the both exprecions.

• P (A|W )P (W ) = 1
3

3 ∗ 0.01

• P (A|F )P (F ) = 1
6

3 ∗ 0.99 (LARGEST)

Since P (A|F )P (F ) > P (A|W )P (W ) we can asume that the fair dice was
used.

HMM approach

We can model it like this, where we have 2 states Q = fair, weighted. The
outcomes from the dist. dependencys are then observed on the state.
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HMM are used for

• Gene �nding

• Predict secondary structure of proteins

• Predict protein localization

• Identify/characterize domain/genefamilies

Algorithmic problems for HMM

• What is the probability that a sequence X is generated from an HMM
M?

• Which sequence of states has the highest probability to generate X?

• Which HMM has the highest probability to generate a set of sequences
S? (Expectation maximisation is used to compute the parameters of
this HMM)
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