
Algorithmic Bioinformatics DD2450, spring 2010,

Lecture 6

Lecturer Jens Lagergren
Several current and previous students

will be acknowledged in a separate document.

April 21, 2010

Chapter 1

Hidden Markov Models

Definition 1. A Hidden Markov Model (HMM) is a 6-tuple M = (Σ, Q, qI , qT , A, E)
where:

1.
∑

= {σ1, σ2, . . . , σr} is an alphabet.

2. Q = {q0, q1, . . . , qi} is a set of states.

3. qI , is the initial state.

4. qT , is the terminal state.

5. A = {aqq′ : q, q′ ∈ Q} are transition probabilities such that∑
q′

aqq′ = 1, ∀q ∈ Q

.

6. E = {eq(σ) : q ∈ Q, σ ∈ Σ} are emission probabilities such that∑
σ∈Σ

eq(σ) = 1, ∀q ∈ Q

.

”Behaviour” of a HMM:

1. Start in state q = qI (for this state no symbol is emitted).

2. ”Transit” to state q′ according to aqq′ .

3. In q′, emit a symbol σ ∈ Σ according to eq′(σ).

4. If q′ = qT stop, otherwise set q = q′, then continue at (2).

1

Figure 1.1: An example of an HMM for a casino that have two different dices
one fair and one biased. The possible observation sequence is a sequence of
observable outcomes of a dice. The possible state sequence is the state that the
model was in for the different observations, in this case the different dice used.
The state sequence is usually hidden.

The probability that a HMM emitted a certain sequence of its alphabet is:

Pr[x1, x2, . . . , xn, π0, π1, π2, . . . , πn] = Pr[x1, x2, . . . , xn, π1, π2, . . . , πn] (1.1)

where
π0, π1, . . . , πn, πi ∈ Q

x1, x2, . . . , xn, xi ∈ Σ

xi is the symbol emitted in state πi. Since we always know the initial state
(π0 = qI), it presents no uncertainty, and therefore we need not consider π0 in
(1.1).
Observe that a Markov property is satisfied:

Pr[xn, πn|x1, x2, . . . , xn.1, π1, . . . , πn−1] = Pr[xn, πn|πn−1]

and also
Pr[xn, πn|πn−1] = aπn−1πneπn(xn) (1.2)

Claim 1.

Pr[x1, . . . , xn, π1, . . . , πn] =
n∏

i=1

aπi−1πieπi(xi)

2

Proof. We will do this proof by induction.
Base case:

Pr[x1, π1] = aπ0,π1eπ1(x1) =
1∏

i=1

aπi−1,πieπi(xi)

Induction assumption:

Pr[x1, ..., xn−1, π1, ..., πn−1] =
n−1∏
i=1

aπi−1πi
eπi

(xi)

It follows that

Pr[x1, ..., xn, π1, ..., πn] = Pr[xn, πn|x1, ..., xn−1, π1, ..., πn−1]Pr[x1, ..., xn−1, π1, ..., πn−1]
= Pr[xn, πn|πn−1]Pr[x1, ..., xn−1, π1, ..., πn−1]

= {Assumption and equation (1.2)} = eπn(xn)aπn−1πn

n−1∏
i=1

aπi−1πi
eπi

(xi)

=
n∏

i=1

aπi−1πi
eπi

(xi)

Application:
What can a HMM be used for in bioinformatics? One common application is to
determine whether a given protein sequence x = x1, ..., xn belongs to a certain
family or not. Given a HMM F that represents the protein family and a thresh-
old t (determines whether we include the sequence or not), we can answer the
question by calculating Pr[x1, ..., xn|F] > t?

One way to calculate Pr[x1, ..., xn] is to use Pr[x1, ..., xn, π1, ..., πn] and sum
over all π1, ..., πn to get the marginal distribution

Pr[x1, ..., xn] =
∑

π1,...,πn∈Q

Pr[x1, ..., xn, π1, ..., πn]

However, this sum contains exponentially many terms O(|Q|n).

One way to solve this is by using dynamic programming.

Claim 2. Pr[x1, ..., xn] can be computed in time O(|Q|2n).

Proof. We use dynamic programming to prove this claim.

Let
fπ(i) = Pr[x1, ..., xi, πi = π]

3

We now set up a recursion for fπ(i)

fπ(i) = Pr[x1, ..., xi, πi = π]

=
∑

π′∈Q

Pr[x1, ..., xi, πi = π|x1, ..., xi−1, πi−1 = π′]Pr[x1, ..., xi−1, πi−1 = π′]

=
∑

π′∈Q

Pr[xi, πi = π|πi−1 = π′]fπ′(i− 1)

=
∑

π′∈Q

eπ(xi)aπ′,πfπ′(i− 1)

= eπ(xi)
∑

π′∈Q

aπ′,πfπ′(i− 1)

Base cases are
fqI

(0) = 1

and
fq(0) = 0, ∀q 6= qI ∈ Q

We have O(n|Q|) elements of f to calculate and each f takes O(|Q|) to calculate,
therefore the time complexity is O(|Q|2n).
The final result will be in fqT

(n).

We now turn to the problem of finding a sequence of states that maximizes the
probability of a given sequence of symbols, i.e. the sequence of states that is
most likely to have generated the sequence of symbols, given that it was gener-
ated by the HMM. More precisely:

Problem
Given a HMM

M = (Σ, Q, qI , qT , A, E)

and a sequence of symbols

x1, . . . , xn, xi ∈ Σ

find
max

π1,...,πn∈Q
Pr[x1, . . . , xn|π1, . . . , πn]

and argmax i.e. a sequence of states that generates the maximum probability.

Claim 3. This can be done in time O(|Q|2n) by dynamic programming (called
Viterbi algorithm).

Proof. :
Let

Vπ(i) = max
π1,...,πi−1∈Q

Pr[x1, . . . , xi, π1, . . . , πi−1, πi = π]

4

Figure 1.2: A possible HMM for the prediction of the secondary structure of
a protein. The observed sequence is the actual protein sequence. The goal
of this model would be to determine whether each of the amino acids in the
protein sequence belongs to an α-helix, a β-sheet or a loop sequence (amino
acids between structural components).

Recursion

Vπ(i) = max
π1,...,πi−1∈Q

Pr[x1, . . . , xi, π1, . . . , πi−1, πi = π]

= max
π′

max
π1,...,πi−2∈Q

Pr[x1, . . . , xi, π1, . . . , πi−2, πi−1 = π′, πi = π]

= max
π′

max
π1,...,πi−2∈Q

Pr[xi, πi = π|πi−1 = π′]Pr[x1, . . . , xi−1, π1, . . . , πi−2, πi−1 = π′]

= eπ(xi) max
π′

aπ′πVπ′(i− 1)

Base cases

VqI
(0) = 1

and
Vq(0) = 0, ∀q 6= qI ∈ Q

Each Vq(i) takes time O(|Q|) and there are O(|Q|n) Vq(i) to compute, so time
is O(|Q|2n).

5

