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Chapter 1

Training of HMMs using
EM

Recall
xayb where x + y = 1, 0 ≤ x, y,≤ 1

is maximized by x = a
a+b and y = b

a+b .

In general,

n∏
i=1

xai
i where

n∑
i=1

= 1, 0 ≤ xi ≤ 1

is maximized by xi = aiPn
i=1 ai

.

In other words we are setting probabilities to normalized powers. Note that
maximizing

∏n
i=1 xai

i is equivalent to maximizing

log

(
n∏

i=1

xai
i

)
=

n∑
i=1

ai log xi.

1.1 Framework

We have a fixed set of states Q and an alphabet Σ. Recall that training HMM
is an iterative process, which means that we want to improve the transition and
emission probabilities iteratively so that in each step the likelihood for a given
family F is improved.

• Old parameters will be θ, i.e. {eπ(σ)} and {aππ′}.

• New parameters will be θ′, i.e. {e′π(σ)} and {a′ππ′}.

As before we use the following notation
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1.2. THE ITERATIVE PROCESS

• Aπ,π′ = number of transitions from π to π′.

• Aπ = number of visits to the state π.

• Gπ,σ = number of times σ is generated when visiting π.

• A path (through the model) is denoted z. Note that z is a hidden variable,
i.e., z is never observed, although it is generated by the process..

• A generated sequence is denoted x. It is an observable variable.

1.2 The iterative process

One step of the iterative procedure is performed as follows:

a′ππ′ =
∑

x∈F E [Aπ,π′ |x, θ]∑
x∈F E [Aπ|x, θ]

e′π(σ) =
∑

x∈F E [Gπ,σ|x, θ]∑
x∈F E [Aπ|x, θ]

Lectures 5 and 6 show how a′π,π′ and e′π(σ) can be computed using dynamic
programming.

In the iterative procedure, if∏
x∈F

Pr [x|θ′] >
∏
x∈F

Pr [x|θ]

i.e., if the new parameters improves the likelihood for generating F , then we set
θ ← θ′ and continue, otherwise we stop.

Next For ease of notation, we assume F = {x}, and show that one step is
consistent with setting

a′ππ′ =
E [Aπ,π′ |x, θ]
E [Aπ|x, θ]

e′π(σ) =
E [Gπ,σ|x, θ]
E [Aπ|x, θ]

We want to maximize Pr [x|θ′] or equivalently log Pr [x|θ′]. In order to do this,
we apply a special case of Jensen’s inequality, namely,

log E [f(x)] ≥ E [log f(x)]

where x is a random variable. The inequality holds due to the fact that the
logarithm is a concave function.
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1.3. GENERAL DERIVATION OF EM

1.3 General derivation of EM

Let us use the special case of Jensen’s inequality for the general derivation of
EM. As before, let x be the observed data and z the hidden data. We have

log Pr[x|θ′] = log
∑

z∈Q|x|

Pr[x, z|θ′]

= log
∑

z

Pr[z|x, θ]
Pr[x, z|θ′]
Pr[z|x, θ]

= log Ez

[
Pr[x, z|θ′]
Pr[z|x, θ]

| x, θ

]
≥Jensen Ez

[
log

Pr[x, z|θ′]
Pr[z|x, θ]

| x, θ

]
=
∑

z

Pr[z|x, θ] log
Pr[x, z|θ′]
Pr[z|x, θ]

=
∑

z

Pr[z|x, θ] log Pr[x, z|θ′]−
∑

z

Pr[z|x, θ] log Pr[z|x, θ]

= Q(θ′; θ)−R(θ; θ)

where we define Q and R as

Q(θ′; θ) =
∑

z

Pr[z|x, θ] log Pr[x, z|θ′]

R(θ; θ) =
∑

z

Pr[z|x, θ] log Pr[z|x, θ]

Moreover, as is easy to show, we have that

log Pr[x|θ] = Q(θ; θ)−R(θ; θ)

which yields the following implication

Q(θ′; θ) > Q(θ; θ)⇒ log Pr[x|θ′] > log Pr[x|θ]

which is what we are looking for. The reason for introducing Q is that Q is easy
to maximize. What we want to do is maximize Q(θ′; θ) with respect to the new
parameters θ′.

1.3.1 EM-algorithm for HMM training

Pr[x, z|θ′] =
∏
π∈Q
σ∈Σ

e′π(σ)Gx,z
π,σ

∏
π,π′∈Q

a′ππ′Az
π,π′
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1.3. GENERAL DERIVATION OF EM

where

Gx,z
π,σ = # of times σ is generated in state π for x and z

Az
π,π′ = # of π → π′ transitions in z

We get

Q(θ′; θ) =
∑

z

Pr[z|x, θ] log Pr[x, z|θ′]

=
∑

z

Pr[z|x, θ]

∑
π,σ

Gx,z
π,σ log e′π(σ) +

∑
π,π′

Az
π,π′ log a′ππ′


=
∑
π,σ

(∑
z

Pr[z|x, θ]Gx,z
π,σ

)
log e′π(σ) +

∑
π,π′

(∑
z

Pr[z|x, θ]Az
π,π′

)
log a′ππ′

=
∑
π,σ

E[Gπ,σ|x, θ] log e′π(σ) +
∑
π,π′

E[Aπ,π′ |x, θ] log a′ππ′

Note that the first sum only depends on the emission probabilities and that the
second sum only depends on the transition probabilities. We have that transi-
tions probabilities from π are dependent and that emission probabilities for π
are dependent. All other probabilities are independent.

This means that Q(θ’; θ) is maximized by our a′ππ′ and e′π(σ) as before, that is

a′π,π′ =
E [Aπ,π′ |x, θ]
E [Aπ|x, θ]

e′π(σ) =
E [Gπ,σ|x, θ]
E [Aπ|x, θ]

1.3.2 Computing the required probabilities

We want to compute E[Aπ,π′ |x, θ], E[Aπ|x, θ] and E[Gπ,σ|x, θ].
First note that ∑

π′

E[Aπ,π′ |x, θ] = E[Aπ|x, θ]

so E[Aπ|x, θ] is easily computed given E[Aπ,π′ |x, θ]. But

E[Aππ′ |x, θ] =
∑

i

Pr[πi = π, πi+1 = π′|x, θ]

=
∑

i Pr[πi = π, πi+1 = π′, x|θ]
Pr[x|θ]
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1.3. GENERAL DERIVATION OF EM

so it is enough to be able to compute

Pr[πi = π, πi+1 = π′, x|θ]

To do this we introduce the backward variable

bπ(i) = Pr[xi+1, . . . , xn|πi = π, θ]

which can be computed using dynamic programming in a similar way as fπ(i)
was computed in lecture 5.

Now,

Pr[πi = π, πi+1 = π′, x|θ]
= Pr[πi = π, πi+1 = π′, x|Xi, πi = π, θ]Pr[Xi, πi = π|θ]
= Pr[xi+1, . . . , xn, πi+1 = π′|πi = π, θ]︸ ︷︷ ︸

The Markov property!

Pr[Xi, πi = π|θ]︸ ︷︷ ︸
fπ(i)

= Pr[xi+1, . . . , xn|πi+1 = π′, πi = π, θ] Pr[πi+1 = π′|πi = π, θ]︸ ︷︷ ︸
aππ′

fπ(i)

= Pr[xi+2, . . . , xn|πi+1 = π′, θ]︸ ︷︷ ︸
bπ(i+1)

Pr[xi+1|πi+1 = π′]︸ ︷︷ ︸
eπ′ (xi+1)

aππ′fπ(i)

= bπ(i + 1)eπ′(xi+1)aππ′fπ(i)

This way we can compute E[Aπ,π′ |x, θ] and from that E[Aπ|x, θ].
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