Algorithmic Bioinformatics DD2450, spring 2010, Lecture 7-8

Lecturer Jens Lagergren Several current and previous students will be acknowledged in a separate document.

May 6, 2010

Chapter 1

Training of HMMs using EM

Recall

 $x^a y^b$ where x + y = 1, $0 \le x, y, \le 1$

is maximized by $x = \frac{a}{a+b}$ and $y = \frac{b}{a+b}$.

In general,

$$\prod_{i=1}^{n} x_i^{a_i} \text{ where } \sum_{i=1}^{n} = 1, \quad 0 \le x_i \le 1$$

is maximized by $x_i = \frac{a_i}{\sum_{i=1}^n a_i}$.

In other words we are setting probabilities to normalized powers. Note that maximizing $\prod_{i=1}^n x_i^{a_i}$ is equivalent to maximizing

$$\log\left(\prod_{i=1}^{n} x_i^{a_i}\right) = \sum_{i=1}^{n} a_i \log x_i.$$

1.1 Framework

We have a fixed set of states Q and an alphabet Σ . Recall that training HMM is an iterative process, which means that we want to improve the transition and emission probabilities iteratively so that in each step the likelihood for a given family F is improved.

- Old parameters will be θ , i.e. $\{e_{\pi}(\sigma)\}\$ and $\{a_{\pi\pi'}\}$.
- New parameters will be θ' , i.e. $\{e'_{\pi}(\sigma)\}\$ and $\{a'_{\pi\pi'}\}$.

As before we use the following notation

- $A_{\pi,\pi'}$ = number of transitions from π to π' .
- A_{π} = number of visits to the state π .
- $G_{\pi,\sigma}$ = number of times σ is generated when visiting π .
- A path (through the model) is denoted z. Note that z is a hidden variable, i.e., z is never observed, although it is generated by the process.
- A generated sequence is denoted x. It is an observable variable.

1.2 The iterative process

One step of the iterative procedure is performed as follows:

$$a'_{\pi\pi'} = \frac{\sum_{x \in F} \operatorname{E} \left[A_{\pi,\pi'} | x, \theta\right]}{\sum_{x \in F} \operatorname{E} \left[A_{\pi} | x, \theta\right]}$$
$$e'_{\pi}(\sigma) = \frac{\sum_{x \in F} \operatorname{E} \left[G_{\pi,\sigma} | x, \theta\right]}{\sum_{x \in F} \operatorname{E} \left[A_{\pi} | x, \theta\right]}$$

Lectures 5 and 6 show how $a'_{\pi,\pi'}$ and $e'_{\pi}(\sigma)$ can be computed using dynamic programming.

In the iterative procedure, if

$$\prod_{x \in F} \Pr\left[x|\theta'\right] > \prod_{x \in F} \Pr\left[x|\theta\right]$$

i.e., if the new parameters improves the likelihood for generating F, then we set $\theta \leftarrow \theta'$ and continue, otherwise we stop.

Next For ease of notation, we assume $F = \{x\}$, and show that one step is consistent with setting

$$a'_{\pi\pi'} = \frac{\mathrm{E}\left[A_{\pi,\pi'}|x,\theta\right]}{\mathrm{E}\left[A_{\pi}|x,\theta\right]}$$
$$e'_{\pi}(\sigma) = \frac{\mathrm{E}\left[G_{\pi,\sigma}|x,\theta\right]}{\mathrm{E}\left[A_{\pi}|x,\theta\right]}$$

We want to maximize $\Pr[x|\theta']$ or equivalently $\log \Pr[x|\theta']$. In order to do this, we apply a special case of Jensen's inequality, namely,

$$\log \mathbf{E}\left[f(x)\right] \ge \mathbf{E}\left[\log f(x)\right]$$

where x is a random variable. The inequality holds due to the fact that the logarithm is a concave function.

1.3 General derivation of EM

Let us use the special case of Jensen's inequality for the general derivation of EM. As before, let x be the observed data and z the hidden data. We have

$$\begin{split} \log \Pr[x|\theta'] &= \log \sum_{z \in Q^{|x|}} \Pr[x, z|\theta'] \\ &= \log \sum_{z} \Pr[z|x, \theta] \frac{\Pr[x, z|\theta']}{\Pr[z|x, \theta]} \\ &= \log E_z \left[\frac{\Pr[x, z|\theta']}{\Pr[z|x, \theta]} \mid x, \theta \right] \\ &\geq \text{Jensen } E_z \left[\log \frac{\Pr[x, z|\theta']}{\Pr[z|x, \theta]} \mid x, \theta \right] \\ &= \sum_{z} \Pr[z|x, \theta] \log \frac{\Pr[x, z|\theta']}{\Pr[z|x, \theta]} \\ &= \sum_{z} \Pr[z|x, \theta] \log \Pr[x, z|\theta'] - \sum_{z} \Pr[z|x, \theta] \log \Pr[z|x, \theta] \\ &= Q(\theta'; \theta) - R(\theta; \theta) \end{split}$$

where we define Q and R as

$$Q(\theta';\theta) = \sum_{z} \Pr[z|x,\theta] \log \Pr[x,z|\theta']$$
$$R(\theta;\theta) = \sum_{z} \Pr[z|x,\theta] \log \Pr[z|x,\theta]$$

Moreover, as is easy to show, we have that

$$\log \Pr[x|\theta] = Q(\theta;\theta) - R(\theta;\theta)$$

which yields the following implication

$$Q(\theta';\theta) > Q(\theta;\theta) \Rightarrow \log \Pr[x|\theta'] > \log \Pr[x|\theta]$$

which is what we are looking for. The reason for introducing Q is that Q is easy to maximize. What we want to do is maximize $Q(\theta'; \theta)$ with respect to the new parameters θ' .

1.3.1 EM-algorithm for HMM training

$$\Pr[x, z|\theta'] = \prod_{\substack{\pi \in Q\\\sigma \in \Sigma}} e'_{\pi}(\sigma) G^{x, z}_{\pi, \sigma} \prod_{\pi, \pi' \in Q} a'_{\pi \pi'} A^{z}_{\pi, \pi'}$$

where

 $G^{x,z}_{\pi,\sigma}=\#$ of times σ is generated in state π for x and z

$$A^z_{\pi,\pi'} = \# \text{ of } \pi \to \pi' \text{ transitions in z}$$

We get

$$\begin{aligned} Q(\theta';\theta) &= \sum_{z} \Pr[z|x,\theta] \log \Pr[x,z|\theta'] \\ &= \sum_{z} \Pr[z|x,\theta] \left(\sum_{\pi,\sigma} G^{x,z}_{\pi,\sigma} \log e'_{\pi}(\sigma) + \sum_{\pi,\pi'} A^{z}_{\pi,\pi'} \log a'_{\pi\pi'} \right) \\ &= \sum_{\pi,\sigma} \left(\sum_{z} \Pr[z|x,\theta] G^{x,z}_{\pi,\sigma} \right) \log e'_{\pi}(\sigma) + \sum_{\pi,\pi'} \left(\sum_{z} \Pr[z|x,\theta] A^{z}_{\pi,\pi'} \right) \log a'_{\pi\pi'} \\ &= \sum_{\pi,\sigma} E[G_{\pi,\sigma}|x,\theta] \log e'_{\pi}(\sigma) + \sum_{\pi,\pi'} E[A_{\pi,\pi'}|x,\theta] \log a'_{\pi\pi'} \end{aligned}$$

Note that the first sum only depends on the emission probabilities and that the second sum only depends on the transition probabilities. We have that transitions probabilities from π are dependent and that emission probabilities for π are dependent. All other probabilities are independent.

This means that $Q(\theta'; \theta)$ is maximized by our $a'_{\pi\pi'}$ and $e'_{\pi}(\sigma)$ as before, that is

$$a'_{\pi,\pi'} = \frac{\mathrm{E}\left[A_{\pi,\pi'}|x,\theta\right]}{\mathrm{E}\left[A_{\pi}|x,\theta\right]}$$
$$e'_{\pi}(\sigma) = \frac{\mathrm{E}\left[G_{\pi,\sigma}|x,\theta\right]}{\mathrm{E}\left[A_{\pi}|x,\theta\right]}$$

1.3.2 Computing the required probabilities

We want to compute $E[A_{\pi,\pi'}|x,\theta]$, $E[A_{\pi}|x,\theta]$ and $E[G_{\pi,\sigma}|x,\theta]$. First note that

$$\sum_{\pi'} E[A_{\pi,\pi'}|x,\theta] = E[A_{\pi}|x,\theta]$$

so $E[A_{\pi}|x,\theta]$ is easily computed given $E[A_{\pi,\pi'}|x,\theta]$. But

$$E[A_{\pi\pi'}|x,\theta] = \sum_{i} \Pr[\pi_{i} = \pi, \pi_{i+1} = \pi'|x,\theta] \\ = \frac{\sum_{i} \Pr[\pi_{i} = \pi, \pi_{i+1} = \pi', x|\theta]}{\Pr[x|\theta]}$$

so it is enough to be able to compute

$$\Pr[\pi_i = \pi, \pi_{i+1} = \pi', x|\theta]$$

To do this we introduce the backward variable

$$b_{\pi}(i) = \Pr[x_{i+1}, \dots, x_n | \pi_i = \pi, \theta]$$

which can be computed using dynamic programming in a similar way as $f_{\pi}(i)$ was computed in lecture 5.

Now,

$$\begin{aligned} &\Pr[\pi_{i} = \pi, \pi_{i+1} = \pi', x|\theta] \\ &= \Pr[\pi_{i} = \pi, \pi_{i+1} = \pi', x|X^{i}, \pi_{i} = \pi, \theta] \Pr[X^{i}, \pi_{i} = \pi|\theta] \\ &= \underbrace{\Pr[x_{i+1}, \dots, x_{n}, \pi_{i+1} = \pi'|\pi_{i} = \pi, \theta]}_{\text{The Markov property!}} \underbrace{\Pr[X^{i}, \pi_{i} = \pi|\theta]}_{f_{\pi}(i)} \\ &= \Pr[x_{i+1}, \dots, x_{n}|\pi_{i+1} = \pi', \pi_{i} = \pi, \theta] \underbrace{\Pr[\pi_{i+1} = \pi'|\pi_{i} = \pi, \theta]}_{a_{\pi\pi'}} f_{\pi}(i) \\ &= \underbrace{\Pr[x_{i+2}, \dots, x_{n}|\pi_{i+1} = \pi', \theta]}_{b_{\pi}(i+1)} \underbrace{\Pr[x_{i+1}|\pi_{i+1} = \pi']}_{e_{\pi'}(x_{i+1})} a_{\pi\pi'} f_{\pi}(i) \\ &= b_{\pi}(i+1)e_{\pi'}(x_{i+1})a_{\pi\pi'} f_{\pi}(i) \end{aligned}$$

This way we can compute $E[A_{\pi,\pi'}|x,\theta]$ and from that $E[A_{\pi}|x,\theta]$.