Algorithmic Bioinformatics Burrow-Wheeler Algorithm

Mans Magnusson, Farzon Nosiri

2010-05-06

Abstract

BLAST has been used for many years when aligningn short reads against genomes but it is not fast
enough any more. We describe BWA: A fast and accurate short read alignment with Burrows-Wheeler
transform.

By Hang Le and Richard Durbin

1 Introduction

Given a query W with respect to a database(genome) BWA can, after some preprocessing, give back an
exact match in time O(|W1).

1.1 Preprocessing

e Let X be an lexicographic alphabet, for example ¥ = {A,C, G, T}, with $ being the smallest element,
the rest can be in any order.

o Let X =x2px1...2,,_1 Wwherez; € X, 0<i<n-—2and z,,_1 = $.

We say that X[i] = x;, 0 <i < n— 1, is the i:th symbol of X, X2 = x;...x,_1 is a suffix string of X
and X20S9 = g, ... x;.

A suffix array(SA) for X is an array S where S[i] is the start position of the i:th smallest suffix of X.

The Burrows-Wheeler Transform of X is defined as follows:

$ if S[i] =0,
{ X (S[f]] —1) otherwise.

Bli] =

We also define the length of string X as | X| and therefore we have that |X| = |B| = n.

Example

Our genome = googol so X = googol$

Positions | Suf fizes
0 g00gol$
1 00gol$g
2 ogol$go
3 gol$goo
4 ol$goog
5 1$go0go
6 $googol

Here we have sorted the suffixes in lexicographical order.

Sorting =

=3

Suf fires

StartPositions

T W N~ O .

6

=N Ot o W o

1

$googo
gol$go
googol
1$goog
ogol$g
ol$goo
oogol$

1

R 08 O © &~ O

The positions of the first symbols form the suffixarray S(¢) = (6, 3,0,5,2,4, 1) and the concatenation of the
last symbols of the circulated strings gives the BWT string B[i] =lo$oogg.

End of example

Observe

Each occurence of W is in a interval of the Suffix Array S.

We will search for the so called SA interval of W.

Definition 1. The SA interval of W is [R(W), R(W)] where

Observe

All occurences of W in X have startposition in

Moreover R(W) < R(W) if and only if W occur in X.

R(W) = min{k: W is a prefiz of X=5®)}
ROW) = maz{k: Wis a prefiz of X=5*)}

{S(k) : ROW) < k < R(W)}

Theorem (Ferragine, Manzini, 2000)

Let ¢(a) = The number of ¢ such that X; is lexicographically smaller than a € &

and let

O(a,i) = The number of occurences of a in B=%<!

then

R(aW) =c¢(a) + O(a, RW) —-1)+1

R(aW) = c(a) + O(a, R(W))

Where aW is the symbol a concatenated to the string W.

For example if our original query was W = ogo then in the theorem above a = 0 and W = go.

In particular for the empty string &, we have that R(¢) = 0 and R(e) =n — 1

Observations
(i) All suffixes starting with a symbol which is lexicographically smaller than a will appear before aW

= R(aW) > c(a)

(ii) Some suffixes in [0, R(W) — 1] are preceeded by an a
= R(aW) > ¢(a) + O(a, R(W) — 1)
Moreover any suffixes preceeding aW is of the type (i) or (i) so

= R(aW) = c¢(a) + O(a, R(W) — 1)

(iii) The number of suffixes in R(W), R(W) that are preceeded by a is
O(a, R(W) = 1) = O(a, R(W) — 1)

R(W) = c(a) + O(a, R(W))

1.2 Algorithm
We make a call like ExRecur(W, i, k, 1) or InexRecur(W, i, z, k, 1) where

e W is our query
o i=|Wl-1
e k, 1is our SA-intervallsok =0andl =n-1

e 7 is a maximum allowing differences (mismatches or gaps)

Algorithm 1 Calculate exact recursion

Exrecur(W,i, k,1)

if © < 0 then
return [k,!]

end if

if £ <0 then
K+« CW)+O0W,k—1)+1
I+ C(W;)+ O(Wy,1)

end if

return EzRecur(W,i— 1,k,l)

Algorithm 2 Calculate inexact recursion

InexRecur(W, i, z, k,1)
if z < 0 then
return o
end if
if i <0 then
return [k,
end if:
I+ o
for 0 € {A,C,G,T} do
k+C(o)+O(c,k—1)+1
I+ C(o)+ O(0,1)
if £ <1 then
I« ITUInexRecur(W,i,z —1,k,1)
if o = W, then
I+ I'UInexRecur(W,i—1,z,k,l)
else
I + ITUInexRecur(W,i—1,z —1,k,1)
end if
end if
end for

