
Algorithmic Bioinformatics Burrow-Wheeler Algorithm

Måns Magnusson, Farzon Nosiri

2010-05-06

Abstract

BLAST has been used for many years when aligningn short reads against genomes but it is not fast
enough any more. We describe BWA: A fast and accurate short read alignment with Burrows-Wheeler
transform.
By Hang Le and Richard Durbin

1 Introduction

Given a query W with respect to a database(genome) BWA can, after some preprocessing, give back an
exact match in time O(|W |).

1.1 Preprocessing

• Let Σ be an lexicographic alphabet, for example Σ = {A,C,G, T}, with $ being the smallest element,
the rest can be in any order.

• Let X = x0x1 . . . xn−1 where xi ∈ Σ, 0 ≤ i ≤ n− 2 and xn−1 = $.

• We say that X[i] = xi, 0 ≤ i ≤ n− 1, is the i:th symbol of X, X≥i = xi . . . xn−1 is a suffix string of X
and X≥i,≤j = xi . . . xj .

• A suffix array(SA) for X is an array S where S[i] is the start position of the i:th smallest suffix of X.

• The Burrows-Wheeler Transform of X is defined as follows:

B[i] =

{
$ if S[i] = 0,
X(S[i]− 1) otherwise.

• We also define the length of string X as |X| and therefore we have that |X| = |B| = n.

1

Example

Our genome=googol so X =googol$

Positions Suffixes
0 googol$
1 oogol$g
2 ogol$go
3 gol$goo
4 ol$goog
5 l$googo
6 $googol

Sorting =⇒

i S(i) Suffixes StartPositions
0 6 $googo l
1 3 gol$go o
2 0 googol $
3 5 l$goog o
4 2 ogol$g o
5 4 ol$goo g
6 1 oogol$ g

Here we have sorted the suffixes in lexicographical order.
The positions of the first symbols form the suffixarray S(i) = (6, 3, 0, 5, 2, 4, 1) and the concatenation of the
last symbols of the circulated strings gives the BWT string B[i] = lo$oogg.

End of example

Observe

Each occurence of W is in a interval of the Suffix Array S.

We will search for the so called SA interval of W .

Definition 1. The SA interval of W is [R(W), R(W)] where

R(W) = min{k: W is a prefix of X≥S(k)} (1)

R(W) = max{k: W is a prefix of X≥S(k)} (2)

Observe

All occurences of W in X have startposition in

{S(k) : R(W) ≤ k ≤ R(W)}

Moreover R(W) ≤ R(W) if and only if W occur in X.

Theorem (Ferragine, Manzini, 2000)

Let c(a) = The number of i such that Xi is lexicographically smaller than a ∈ Σ
and let
O(a, i) = The number of occurences of a in B≥0,≤i

then

R(aW) = c(a) +O(a,R(W)− 1) + 1

R(aW) = c(a) +O(a,R(W))

Where aW is the symbol a concatenated to the string W .
For example if our original query was W = ogo then in the theorem above a = o and W = go.

2

In particular for the empty string ε, we have that R(ε) = 0 and R(ε) = n− 1

Observations

(i) All suffixes starting with a symbol which is lexicographically smaller than a will appear before aW

⇒ R(aW) ≥ c (a)

(ii) Some suffixes in [0, R(W)− 1] are preceeded by an a

⇒ R(aW) ≥ c(a) +O(a,R(W)− 1)

Moreover any suffixes preceeding aW is of the type (i) or (ii) so

⇒ R(aW) = c(a) +O(a,R(W)− 1)

(iii) The number of suffixes in R(W), R(W) that are preceeded by a is

O(a,R(W)− 1)−O(a,R(W)− 1)

so
R(W) = c(a) +O(a,R(W))

1.2 Algorithm

We make a call like ExRecur(W, i, k, l) or InexRecur(W, i, z, k, l) where

• W is our query

• i = |W | − 1

• k, l is our SA-intervall so k = 0 and l = n - 1

• z is a maximum allowing differences (mismatches or gaps)

Algorithm 1 Calculate exact recursion

Exrecur(W, i, k, l)
if i < 0 then
return [k, l]

end if
if k ≤ 0 then
K ← C(Wi) +O(Wi, k − 1) + 1
l ← C(Wi) +O(Wi, l)

end if
return ExRecur(W, i− 1, k, l)

3

Algorithm 2 Calculate inexact recursion

InexRecur(W, i, z, k, l)
if z < 0 then
return ∅

end if
if i < 0 then
return [k, l]

end if ;
I ← ∅
for σ ∈ {A,C,G, T} do
k ← C(σ) +O(σ, k − 1) + 1
l ← C(σ) +O(σ, l)
if k ≤ 1 then
I ← I ∪ InexRecur(W, i, z − 1, k, l)
if σ = Wi then
I ← I ∪ InexRecur(W, i− 1, z, k, l)

else
I ← I ∪ InexRecur(W, i− 1, z − 1, k, l)

end if
end if

end for

4

