Algorithmic Bioinformatics Burrow-Wheeler Algorithm

Måns Magnusson, Farzon Nosiri

2010-05-06

Abstract

BLAST has been used for many years when aligning short reads against genomes but it is not fast enough any more. We describe BWA: A fast and accurate short read alignment with Burrows-Wheeler transform.

By Hang Le and Richard Durbin

1 Introduction

Given a query W with respect to a database(genome) BWA can, after some preprocessing, give back an exact match in time $\mathcal{O}(|W|)$.

1.1 Preprocessing

- Let Σ be an lexicographic alphabet, for example $\Sigma = \{A, C, G, T\}$, with \$ being the smallest element, the rest can be in any order.
- Let $X = x_0 x_1 \dots x_{n-1}$ where $x_i \in \Sigma$, $0 \le i \le n-2$ and $x_{n-1} =$.
- We say that $X[i] = x_i, 0 \le i \le n-1$, is the ith symbol of $X, X^{\ge i} = x_i \dots x_{n-1}$ is a suffix string of X and $X^{\ge i, \le j} = x_i \dots x_j$.
- A suffix $\operatorname{array}(SA)$ for X is an array S where S[i] is the start position of the i:th smallest suffix of X.
- The Burrows-Wheeler Transform of X is defined as follows:

$$B[i] = \begin{cases} \$ & \text{if } S[i] = 0, \\ X(S[i] - 1) & \text{otherwise.} \end{cases}$$

• We also define the length of string X as |X| and therefore we have that |X| = |B| = n.

Example

Our genome = googol so X = googol

Positions	Suffixes		i	S(i)	Suffixes	StartPositions
0	googol\$	Sorting \Longrightarrow	0	6	\$googo	1
1	0000		1	3	gol\$go	О
2	ogol\$go		2	0	googol	\$
3	gol\$goo		3	5	l\$goog	о
4	ol\$goog		4	2	ogol	о
5	l\$googo		5	4	ol\$goo	g
6	\$googol		6	1	oogol\$	g

Here we have sorted the suffixes in lexicographical order.

The positions of the first symbols form the suffixarray S(i) = (6, 3, 0, 5, 2, 4, 1) and the concatenation of the last symbols of the circulated strings gives the BWT string B[i] = lo\$oogg.

End of example

Observe

Each occurrence of W is in a interval of the Suffix Array S.

We will search for the so called SA interval of W.

Definition 1. The SA interval of W is $[\underline{R}(W), \overline{R}(W)]$ where

$$\underline{R}(W) = \min\{k: W \text{ is a prefix of } X^{\geq S(k)}\}$$
(1)

$$\overline{R}(W) = max\{k: W \text{ is a prefix of } X^{\geq S(k)}\}$$
(2)

Observe

All occurrences of W in X have startposition in

 $\{S(k): \underline{R}(W) \le k \le \overline{R}(W)\}$

Moreover $\underline{R}(W) \leq \overline{R}(W)$ if and only if W occur in X.

Theorem (Ferragine, Manzini, 2000)

Let c(a) = The number of i such that X_i is lexicographically smaller than $a \in \Sigma$ and let O(a,i) = The number of occurrences of a in $B^{\geq 0, \leq i}$ then

$$\underline{\underline{R}}(aW) = c(a) + O(a, \underline{\underline{R}}(W) - 1) + 1$$

$$\overline{\underline{R}}(aW) = c(a) + O(a, \overline{\underline{R}}(W))$$

Where aW is the symbol a concatenated to the string W. For example if our original query was W = ogo then in the theorem above a = o and W = go. In particular for the empty string ε , we have that $\underline{R}(\varepsilon) = 0$ and $\overline{R}(\varepsilon) = n - 1$

Observations

(i) All suffixes starting with a symbol which is lexicographically smaller than a will appear before aW

 $\Rightarrow \underline{R}(aW) \ge c(a)$

(ii) Some suffixes in $[0, \underline{R}(W) - 1]$ are preceded by an a

$$\Rightarrow \underline{R}(aW) \ge c(a) + O(a, \underline{R}(W) - 1)$$

Moreover any suffixes preceeding aW is of the type (i) or (ii) so

$$\Rightarrow \underline{R}(aW) = c(a) + O(a, \underline{R}(W) - 1)$$

(iii) The number of suffixes in $\underline{R}(W), \overline{R}(W)$ that are preceded by a is

$$O(a, \overline{R}(W) - 1) - O(a, \underline{R}(W) - 1)$$

 \mathbf{SO}

$$\overline{R}(W) = c(a) + O(a, \overline{R}(W))$$

1.2 Algorithm

We make a call like ExRecur(W, i, k, l) or InexRecur(W, i, z, k, l) where

• W is our query

•
$$i = |W| - 1$$

- k, l is our SA-intervall so k = 0 and l = n 1
- z is a maximum allowing differences (mismatches or gaps)

Algorithm 1 Calculate exact recursion

Exrecur(W, i, k, l)if i < 0 then return [k, l]end if if $k \le 0$ then $K \leftarrow C(W_i) + O(W_i, k - 1) + 1$ $l \leftarrow C(W_i) + O(W_i, l)$ end if return ExRecur(W, i - 1, k, l)

Algorithm 2 Calculate inexact recursion

```
InexRecur(W, i, z, k, l)
if z < 0 then
  return \emptyset
end if
if i < 0 then
  return [k, l]
end if;
I \gets \varnothing
for \sigma \in \{A, C, G, T\} do
  k \leftarrow C(\sigma) + O(\sigma, k - 1) + 1
  l \leftarrow C(\sigma) + O(\sigma, l)
  if k \leq 1 then
      I \leftarrow I \cup InexRecur(W, i, z - 1, k, l)
     if \sigma = W_i then
        I \leftarrow I \cup InexRecur(W, i-1, z, k, l)
      \mathbf{else}
         I \leftarrow I \cup InexRecur(W, i-1, z-1, k, l)
      end if
   end if
end for
```