Algorithmic Bioinformatics Burrow-Wheeler Algorithm

Måns Magnusson, Farzon Nosiri

2010-05-06

Abstract

BLAST has been used for many years when aligningn short reads against genomes but it is not fast enough any more. We describe BWA: A fast and accurate short read alignment with Burrows-Wheeler transform. By Hang Le and Richard Durbin

1 Introduction

Given a query W with respect to a database(genome) BWA can, after some preprocessing, give back an exact match in time $\mathcal{O}(|W|)$.

1.1 Preprocessing

- Let Σ be an lexicographic alphabet, for example $\Sigma=\{A, C, G, T\}$, with $\$$ being the smallest element, the rest can be in any order.
- Let $X=x_{0} x_{1} \ldots x_{n-1}$ where $x_{i} \in \Sigma, 0 \leq i \leq n-2$ and $x_{n-1}=\$$.
- We say that $X[i]=x_{i}, 0 \leq i \leq n-1$, is the i:th symbol of $X, X^{\geq i}=x_{i} \ldots x_{n-1}$ is a suffix string of X and $X^{\geq i, \leq j}=x_{i} \ldots x_{j}$.
- A suffix array(SA) for X is an array S where $S[i]$ is the start position of the i:th smallest suffix of X.
- The Burrows-Wheeler Transform of X is defined as follows:

$$
B[i]= \begin{cases}\$ & \text { if } S[i]=0 \\ X(S[i]-1) & \text { otherwise }\end{cases}
$$

- We also define the length of string X as $|X|$ and therefore we have that $|X|=|B|=n$.

Example

Our genome $=$ googol so $X=$ googol $\$$

Positions	Suffixes
0	googol\$
1	oogol\$g
2	ogol\$go
3	gol\$goo
4	ol\$goog
5	l\$googo
6	\$googol

Sorting \Longrightarrow| i | $S(i)$ | Suffixes | StartPositions |
| :---: | :---: | :---: | :---: |
| 0 | 6 | \$googo | l |
| 1 | 3 | gol\$go | o |
| 2 | 0 | googol | $\$$ |
| 3 | 5 | l\$goog | o |
| 4 | 2 | ogol\$g | o |
| 5 | 4 | ol\$goo | g |
| 6 | 1 | oogol\$ | g |

Here we have sorted the suffixes in lexicographical order.
The positions of the first symbols form the suffixarray $S(i)=(6,3,0,5,2,4,1)$ and the concatenation of the last symbols of the circulated strings gives the BWT string $B[i]=\operatorname{lo} \$ \mathrm{oogg}$.

End of example

Observe

Each occurence of W is in a interval of the Suffix Array S.
We will search for the so called $S A$ interval of W.

Definition 1. The $S A$ interval of W is $[\underline{R}(W), \bar{R}(W)]$ where

$$
\begin{align*}
& \underline{R}(W)=\min \left\{k: W \text { is a prefix of } X^{\geq S(k)}\right\} \tag{1}\\
& \bar{R}(W)=\max \left\{k: W \text { is a prefix of } X^{\geq S(k)}\right\} \tag{2}
\end{align*}
$$

Observe

All occurences of W in X have startposition in

$$
\{S(k): \underline{R}(W) \leq k \leq \bar{R}(W)\}
$$

Moreover $\underline{R}(W) \leq \bar{R}(W)$ if and only if W occur in X.
Theorem (Ferragine, Manzini, 2000)
Let $c(a)=$ The number of i such that X_{i} is lexicographically smaller than $a \in \Sigma$
and let
$O(a, i)=$ The number of occurences of a in $B^{\geq 0, \leq i}$
then

$$
\begin{aligned}
& \underline{R}(a W)=c(a)+O(a, \underline{R}(W)-1)+1 \\
& \bar{R}(a W)=c(a)+O(a, \bar{R}(W))
\end{aligned}
$$

Where $a W$ is the symbol a concatenated to the string W.
For example if our original query was $W=o g o$ then in the theorem above $a=o$ and $W=g o$.

In particular for the empty string ε, we have that $\underline{R}(\varepsilon)=0$ and $\bar{R}(\varepsilon)=n-1$

Observations

(i) All suffixes starting with a symbol which is lexicographically smaller than a will appear before $a W$

$$
\Rightarrow \underline{R}(a W) \geq c(a)
$$

(ii) Some suffixes in $[0, \underline{R}(W)-1]$ are preceeded by an a

$$
\Rightarrow \underline{R}(a W) \geq c(a)+O(a, \underline{R}(W)-1)
$$

Moreover any suffixes preceeding $a W$ is of the type (i) or $(i i)$ so

$$
\Rightarrow \underline{R}(a W)=c(a)+O(a, \underline{R}(W)-1)
$$

(iii) The number of suffixes in $\underline{R}(W), \bar{R}(W)$ that are preceeded by a is

$$
O(a, \bar{R}(W)-1)-O(a, \underline{R}(W)-1)
$$

SO

$$
\bar{R}(W)=c(a)+O(a, \bar{R}(W))
$$

1.2 Algorithm

We make a call like $\operatorname{ExRecur}(\mathrm{W}, \mathrm{i}, \mathrm{k}, \mathrm{l})$ or $\operatorname{InexRecur}(\mathrm{W}, \mathrm{i}, \mathrm{z}, \mathrm{k}, \mathrm{l})$ where

- W is our query
- $\mathrm{i}=|W|-1$
- k, l is our SA-intervall so $\mathrm{k}=0$ and $\mathrm{l}=\mathrm{n}-1$
- z is a maximum allowing differences (mismatches or gaps)

```
Algorithm 1 Calculate exact recursion
    \(\operatorname{Exrecur}(W, i, k, l)\)
    if \(i<0\) then
        return \([k, l]\)
    end if
    if \(k \leq 0\) then
        \(K \leftarrow C\left(W_{i}\right)+O\left(W_{i}, k-1\right)+1\)
        \(l \leftarrow C\left(W_{i}\right)+O\left(W_{i}, l\right)\)
    end if
    return \(\operatorname{ExRecur}(W, i-1, k, l)\)
```

```
Algorithm 2 Calculate inexact recursion
    \(\operatorname{InexRecur}(W, i, z, k, l)\)
    if \(z<0\) then
        return \(\varnothing\)
    end if
    if \(i<0\) then
        return \([k, l]\)
    end if;
    \(I \leftarrow \varnothing\)
    for \(\sigma \in\{A, C, G, T\}\) do
        \(k \leftarrow C(\sigma)+O(\sigma, k-1)+1\)
        \(l \leftarrow C(\sigma)+O(\sigma, l)\)
        if \(k \leq 1\) then
            \(I \leftarrow I \cup \operatorname{InexRecur}(W, i, z-1, k, l)\)
            if \(\sigma=W_{i}\) then
                \(I \leftarrow I \cup \operatorname{InexRecur}(W, i-1, z, k, l)\)
            else
                \(I \leftarrow I \cup \operatorname{InexRecur}(W, i-1, z-1, k, l)\)
            end if
        end if
    end for
```

