12/5/11

DD2451
Parallel and Distributed Computing

FDD3008
Distributed Algorithms

Lecture 10
Peer to Peer Systems

Mads Dam
Autumn/Winter 201 |

Overview

Consistency vs availability

— CAP and ACID vs BASE
Linear and consistent hashing
DHT'’s

P2P search trees

Join and leave

P2P architectures

Supporting churn

Why Do We Use Replication?

* Fault tolerance:
— If some nodes fail, information is not lost
— System should look as if there is no concurrency
— l.e. it should maintain “consistency”
— But it should still survive crashes and attacks

* Availability
— But consistency is expensive
— In particular for very large systems
— What if availability is more important than consistency?

Example: Bookstore

Consider a bookstore which sells
its wares over the web:

Which properties do we want? !q
Consistency - for each user the

system behaves reliably
Availability - if a user clicks on a book

in order to put it in his shopping cart, the user does not have to wait
for the system to respond.

Partition Tolerance — if the European and the American Datacenter
lose contact, the system should still be able to function.

The CAP Theorem

Theorem: It is impossible for a distributed computer system to
simultaneously provide Consistency, Availability and Partition
Tolerance. A distributed system can satisfy any two of these
guarantees at the same time but not all three.

Proof: The proof is rather trivial. If a partition occurs into
networks N1 and N2, Ain N1 writes to vin N1 and B in N2
reads from v. If N1 and N2 are not connected either A and B
must wait to synchronize — availability is lost — or the system
may become inconsistent.

The second part of the statement: We need to exhibit

solutions in each case, but we already have the tools at hand.

CAP Theorem: Consequences

Partition

/ '%\ i

Drop Consistency
Accept that things will become
»Eventually consistent”
(e.g. bookstore: If two orders for
the same book were received, at
least one of the clients receives
a back-order)

G
Drop Availability

Wait until data is consistent and
therefore remain unavailable
during that time.

ACID and BASE

BASE

Large Networks
* Scalability:

— Support large numbers of nodes
— Order of 103 — 10° nodes

— May be geographically dispersed

— Or may be used for e.g. scalable storage inside data
centers

* Availability:
— Emphasis on fast response times
* Survivability:

— System should survive “reasonable “ failure scenarios

ACID and BASE

BASE

12/5/11

Robustness

Large network => failures unavoidable

— Churn: Join and leave of nodes under operation
— Leaves often without warning

— Often inherent in P2P networks

— Allow transient inconsistencies
Consistency:

— Large system + churn + transient inconsistency -> system is
never in stable state

— Eventual consistency = consistency if system is stable for
sufficiently long (!)

Byzantine fault tolerance
— Still relevant to catch attackers, freeriders
— Some references at end of last slide set

Examples
* Large scale distribution + weak consistency + high availability:
— Cloud Computing: Currently popular umbrella name
— Grid Computing: Parallel computing beyond a single cluster
— Distributed Storage: Focus on storage

— Peer-to-Peer Computing: Focus on storage, affinity with file
sharing

— Overlay Networking: Focus on network applications

— Self-Organization, self-*, Service-Oriented Computing,
Autonomous Computing, etc.

« Technically, many of these systems are similar, so we focus on
one.

P2P: Distributed Hash Table (DHT)

Data objects are distributed among the peers
— Each object is uniquely identified by a key
Each peer can perform certain operations

— Search(key) (returns the object associated with key)
— Insert(key, object)

— Delete(key) .! Q
* Classic implementations of these operations searchliey) Q
S
— Search Tree (balanced, B-Tree) Q f \
— Hashing (various forms)) Q
* “Distributed” implementations

— Linear Hashing

— Consistent Hashing

12/5/11

Distributed Hashing

* The hash of afile is its key

hash
= .10111010101110011... .73

* Each peer stores data in a certain range of the ID space [0,1]

0 101x 1

}gi %% gi g% g% g% g%g{

* Instead of storing data at the right peer, just store a forward-pointer

Vanilla Hashing

* Problem: More and more objects should be stored = Need to
buy new machines!

* Example: From 4 to 5 machines

0 1

1 1 1]
T T 1

1
= == =

* New bucket needed => about % of all objects to be moved

* Is there a hash regime that allows buckets to be dynamically
added and removed, with only local effects?

Linear Hashing

* Dynamically updatable hashing scheme

« Initially m buckets

* Initial hashing function hy(k) = f(k) % m

* Pointerp:0<=p<=m-1 .

L 481216 4 1,5 L 6,10, 22 L 37,1519

r L T T 1
Bucket 1 Bucket 2 Bucket 3

* m=4,p=0,hy(k) =k %4

* On overflow bucket w. pointer splits and hash fn refined:

0
L 412, 816 1,5 1 6,10, 22 1 3,7,11,15,19,

I T T T T 1
Bucket 0 Bucket 5 Bucket 1 Bucket 2 Bucket 3

* New hash fn hy(k) = k % 8, etc etc

Consistent Hashing

 Linear hashing needs central dispatcher

* Idea: Also the machines get hashed! Each machine is
responsible for the files closest to it

* Use multiple hash functions for reliability!

]
A
. e .

RIRIRIRIRIRIRIRIRIRIEIE

Karger et al: Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the
World Wide Web, STOC 1997

Search & Dynamics

* Problem with both linear and consistent hashing is that all the
participants of the system must know all peers...

— Peers must know which peer they must contact for a
certain data item

— This is again not a scalable solution...

* Another problem: dynamics!

— Peers join and leave % . %
— Orfail . .. [.! g = — =

P2P Dictionary = Hashing

D hash

5 2F2E

0000x 0001x

10111010101110011...

Question is: How do we find machine 101x?

12/5/11

P2P Dictionary = Search Tree

Storing the Search Tree

* Where is the search tree stored?
* In particular, where is the root stored?

— What if the root crashes?! The root clearly reduces
scalability & fault tolerance...

— Solution: There is no root...!

* If a peer wants to store/search, how does it know where to
go?

— Again, we don’t want that every peer has to know all
others...

— Solution: Every peer only knows a small subset of others

0000x 0001x

The Neighbors of Peers 001x P2P Dictionary: Search

Search hash

value 1011... Q 1100,(Search 1011... %
1010x \&,
/ c’
0000x \

0001)(machine

P2P Dictionary: Search P2P Dictionary: Search

Again, 001 searches for 100: Again, 001 searches for 100:

12/5/11

Search Analysis

* We have n peers in the system
* Assume that the “tree” is roughly balanced
— Leaves (peers) on level log, n * constant

« Search requires O(log n) steps
— After kt step, the search is in a subtree on level k
— A “step” is a UDP (or TCP) message
— The latency depends on P2P size (world!)

* How many peers does each peer have to know?
— Each peer only needs to store the address of log, n + constant
peers
— Since each peer only has to know a few peers, even if n is large,
the system scales well!

Peer Join
* How are new peers inserted into the system?
* Step 1: Bootstrapping

* Inorder to join a P2P system, a joiner must know a peer
already in the system
Typical solutions:
— Ask a central authority for a list of IP addresses that have
been in the P2P regularly; look up a listing on a web site

— Try some of those you met last time
— Just ping randomly (in the LAN)

Peer Join

* Step 2: Find your place in the P2P system
Peer ID!
* Typical solution:

— Choose a random bit string (which determines the place in
the system)

— Search* for the bit string
— Split with the current leaf responsible for the bit string
— Search* for your neighbors

* These are standard searches

Example: Bootstrap Peer with 001

Random Bit String = 100101...

New Peer Searches 100101...

Random Bit String
=100101...

New Peer found leaf with ID 100...

The leaf and the new peer

split the search space!

Find Neighbors

12/5/11

Peer Join: Discussion

If tree is balanced, the time to join is
— O(log n) to find the right place
— O(log n)-O(log n) = O(log? n) to find all neighbors

It is widely believed that since all the peers choose their
position randomly, the tree will remain more or less balanced

— However, theory and simulations show that this is not
really true!

Peer Leave

* Since a peer might leave spontaneously, the leave must be
detected first

* Typically, all peers periodically ping neighbors

« If a peer leave is detected, the peer must be replaced. If peer
had a sibling leaf, the sibling might just do a “reverse split”:

* If a peer does not have a sibling, search recursively!

Peer Leave: Recursive Search

Find a replacement:
1. Go down the sibling tree until you find sibling leaves
2. Make the left sibling the new common node

3. Move the free right sibling to the empty spot

Fault-Tolerance?

* Only pointers to the data is stored
— If the data holder crashes, hope for backup

* What if the peer that stores the pointer to the data holder crashes?
— The data holder could advertise its data items periodically

— If it cannot reach a certain peer anymore, it must search for the
peer that is now responsible for the data item

« Alternative approach: Instead of letting the data holders take care
of the availability of their data, let the system ensure that there is
always a pointer to the data holder!

— Replicate the information at several peers
— Different hashes could be used for this purpose

Questions of Experts...

Question: | know so many other structured peer-to-peer
systems (Chord, Pastry, Tapestry, CAN...); they are completely
different from the one you just showed us!

Answer: They look different, but in fact the difference comes
mostly from the way they are presented

Intermezzo: Genealogy of P2P

WWW, POTS, etc.

The parents of Plaxton et al.:
Consistent Hashing, Compact Routing, ...

1097
1998
1999

2000

| Chord | | Pastry | | Tapestry | 2001

|Viceroy | | P-Grid | | Kademlia | 2002

|Koorde| |SkipGraph| |SkipNet| 2003

‘ Plaxton et al: Accessing Nearby Copies of Replicated Objects in a Distributed Environment, SPAA 1997

12/5/11

Chord
* Chord is the most cited P2P system

* Most discussed system in distributed systems and networking
books, for example in Edition 4 of Tanenbaum’s Computer
Networks

* There are extensions on top of it, such as CFS, lvy...

Stoica et al: Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications, SIGCOMM 2001

Chord

* Every peer has logn
many neighbors

¢ Onein distance =2
fork=1, 2, ..., logn

11x &

Skip List

* How can we ensure that the search tree is balanced?
* Skip List:
— (Doubly) linked list with sorted items

— An item adds additional pointers on level 1 with probability %. The
items with additional pointers further add pointers on level 2 with
prob. % etc.

— There are log, n levels in expectation

* Search, insert, delete: Start with root, search for the right interval on
highest level, then continue with lower levels

Skip List

* It can easily be shown that search, insert, and delete
terminate in O(log n) expected time, if there are n items in the
skip list

* The expected number of pointers is only twice as many as
with a regular linked list, thus the memory overhead is small

¢ Asaplus, the items are always ordered...

P2P Architectures

* Use the skip list as a P2P architecture

— Again each peer gets a random value between 0 and 1 and
is responsible for storing that interval

— Instead of a root and a sentinel node (“==”), the list is
short-wired as a ring

* Use the Butterfly or DeBruijn graph as a P2P architecture
— Advantage: The node degree of these graphs is constant >
Only a constant number of neighbors per peer
— A search still only takes O(log n) hops

* Check Wattenhofers chapter for todays lecture

Dynamics Reloaded

¢ Churn: Permanent joins and leaves
— Why permanent?

— Saroiu et al.: ,,A Measurement Study of P2P File Sharing
Systems“: Peers join system for one hour on average

— Hundreds of changes per second with millions of peers in
the system!

* How can we maintain
desirable properties:
— Connectivity?
— Small network diameter
— Low peer degree?

12/5/11

A First Approach
A fault-tolerant hypercube?

What if the number of peers is not 2?

How can we prevent degeneration? /.

Where is the data stored?

Idea: Simulate the hypercube!

Simulated Hypercube

* Simulation: Each node consists of several peers

Basic components:

Peer distribution 00 %0
o
— Distribute peers evenly o ©
among all hypercube nodes
— A token distribution problem ..z : o
* Information aggregation o

— Estimate the total number of
peers

— Adapt the dimension of
the simulated hypercube

o“:
&

Peer Distribution

Algorithm: Cycle over
dimensions and balance!

Perfectly balanced after d
rounds

Dimension of
hypercube

Problem 1: Peers are not

fractional! o
Problem 2: Peers may join/ e

leave during those d rounds! L

“Solution”: Round numbersand | o s L
ignore changes during the d @ ﬁ s
rounds e

Information Aggregation

* Goal: Provide the same (good!) estimation of the total number of
peers presently in the system to all nodes

* Algorithm: Count peers in every sub-cube by exchanging messages
with the corresponding neighbor!)
* Correct number after d rounds L

Pl %!

S
* Problem: Peers may join/leave . .)
during those d rounds! . 2 o A ; g
« Solution: Pipe-lined execution
¥ i J .

* It can be shown that all nodes get the same estimate
* Moreover, this number represents the correct state d rounds ago!

Composing the Components

The system permanently runs
— the peer distribution algorithm to balance the nodes
— the information aggregation algorithm to estimate the
total number of peers and change the dimension
accordingly

How are the peers connected inside a simulated node, and
how are the edges of the hypercube represented?

Where is the data of the DHT stored?

12/5/11

Distributed Hash Table

Hash function determines node where data is replicated
Problem: A peer that has to move to another node must replace store
different data items Core Petiphery
Idea: Divide peers of a node into
core and periphery

— Core peers store data

— Peripheral peers are used for

peer distribution

Peers inside a node are
completely connected

Peers are connected to all
core peers of all neighboring
nodes

Evaluation
The system can tolerate O(log n) joins and leaves each round
The system is never fully repaired, but always fully functional!

In particular, even if there are O(log n) joins/leaves per round
we always have

— at least one peer per node

— at most O(log n) peers per node

— a network diameter of O(log n)

— a peer degree of O(log n)

