DD245]1
Parallel and Distributed Computing

FDD3008
Distributed Algorithms

Lecture 6
Linked Lists

Mads Dam
Autumn/Winter 201 |

Slides: Much material due to M. Herlihy

Last Lecture

Spin locks

Using RMW instructions, CAS etc.
Memory contention, cache effects
Exponential backoff

Queue locks

But: Scalable locks =/=> scalable objects
— If anybody thought that ;-)

Today

e Start looking at concurrent data structures

* Adding threads should not reduce throughput
— Contention
— Mostly fixed by queue locks

 Adding threads should increase throughput
— Not always possible
— Surprising things are parallelizable

What Is the Problem with Locks?

e Careless use of locks may cause deadlocks

foo.Tlock(| E bar.lock()
@ ﬂar.'lock() @ <ﬁooﬂock()

LR

Priority Inversion

* High priority threads pile up behind low priority threads
* Lessimportant threads may get to go first

Medium priority task
Low priority task

High priority task

Convoying

* Fast threads pile up behind slow ones and cause congestion

@

Coarse-grained Synchronization

 Each method locks the object
— Avoid contention using queue locks
— Mostly easy to reason about

— This is the standard Java model (synchronized blocks and
methods)

* Problem: Sequential bottleneck
— Threads “stand in line”
— Adding more threads does not improve throughput
— We even struggle to keep it from getting worse...

* So why do we even use a multiprocessor?
— Well, some applications are inherently parallel...

Exploiting Parallelism

 We will now talk about four “patterns”
— Bag of tricks ...
— Methods that work more than once ...

* For highly-concurrent objects
— Concurrent access

— More threads, more throughput

Pattern #1: Fine-Grained Synchronization

Instead of using a single lock ...

Split object into
— Independently-synchronized components

Methods conflict when they access
— The same component ...
— At the same time

But one method may still block another
— Even if they access disjoint parts of the data structure!

Pattern #2: Optimistic Synchronization

e Search without locking ...
e Ifyou find it, lock and check ...
— OK: we are done
— Oops: start over
e Evaluation
— Usually cheaper than locking, but
— Mistakes are expensive

Pattern 3: Lazy Synchronization

* Postpone hard work
 Removing components is tricky
— Logical removal
 Mark component to be deleted
— Physical removal
* Do what needs to be done

Pattern 4: Lock-free Synchronization

 Don’t use locks at all

— Use compareAndset() & relatives ...
* Advantages

— No Scheduler Assumptions/Support
e Disadvantages

— Complex

— Sometimes high overhead

Concurrent Linked Lists

* In the following, we will illustrate these patterns using a list-
based set

— Common application
— Building block for other apps

e Asetis an collection of items
— No duplicates

 The operations that we want to allow on the set are

— add(x) puts x into the set
— remove (x) takes x out of the set

— contains(x) tests if x is in the set

Lists and List Nodes

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

¥

public class Node {
public T item;
public int key;
public Node next;

¥

List-Based Set

(= @3—*@3—*[?

/M)

Sorted with Sentinel nodes
(min & max possible keys)

Reasoning about Concurrent Objects

Invariant

— Property that always holds

Established because

— True when object is created

— Truth preserved by each method
* Each step of each method

Not sufficient to consider only calls and returns!
Because method bodies may interfere

Specifically ...

* Invariants preserved by
—add(Q)
— remove()
— contains()
* Most steps are trivial
— Usually one step tricky
— Often linearization point
 Representation invariant here:
— Sentinel nodes:
* tail reachable from head
— List is sorted
— No duplicates

Interference

Invariants make sense only if

— methods considered

— are the only modifiers

Language encapsulation helps

— List nodes not visible outside class

Freedom from interference needed even for removed nodes
— Some algorithms traverse removed nodes

— Careful with malloc() & free() !

Garbage collection helps here

Sequential List-Based Set

e Add:

CB*@BY>EI3—>@D

HEA

* Remove:

(T3] - b 3—>(c]

Coarse-Grained Locking

e Lock the sentinel node

(I3 F>b[=F—d]]

Y AN

 Same as with synchronized methods
e Simple and clearly correct
* Not to be dismissed too lightly

Coarse-Grained Locking

2

(T3l F>b[=F—d]]

= TR

Hotspot + bottleneck

Fine-Grained Locking

* Requires careful thought

— “Do not meddle in the affairs of wizards, for they are
subtle and quick to anger”

* Split object into pieces
— Each piece has own lock

— Methods that work on disjoint pieces need not exclude
each other

* Allows list operations to be pipelined

Hand-over-Hand locking

(5=l bl3—(]]

g

Hand-over-Hand locking

a5kl (]

Art of Multiprocessor Programming

24

Hand-over-Hand locking

Hand-over-Hand locking

6 o

Hand-over-Hand locking

Removing a Node

HE g CIE g (I g I g C10

OO

Art of Multiprocessor Programming 28

Removing a Node

Art of Multiprocessor Programming

29

Removing a Node

6 6
I3l 3> (c[3—(a])

Oo,

Removing a Node

Art of Multiprocessor Programming 31

Removing a Node

6 O
sexanil

Oo,

Removing a Node

6

e[F—>{a]]

Why hold 2 locks?
Oo

Art of Multiprocessor Programming

33

Concurrent Removes

HE g CIE g (I g I g C10

Art of Multiprocessor Programming

Concurrent Removes

[[F=>la[5~blF> [0l

Art of Multiprocessor Programming

35

Concurrent Removes

BB {C1E 5og CIE g I g C10

Art of Multiprocessor Programming

36

Concurrent Removes

HE g CIE o {C1E 5o d OIE g C10

Art of Multiprocessor Programming

37

Concurrent Removes

Art of Multiprocessor Programming

38

Concurrent Removes

Art of Multiprocessor Programming

39

Concurrent Removes

Concurrent Removes

Concurrent Removes

Art of Multiprocessor Programming 42

Concurrent Removes

6
=y] bl ([3—>])

Oo, '

Art of Multiprocessor Programming 43

Uh, Oh
SEagtih e[F—>{a]]
R

Art of Multiprocessor Programming

Uh, Oh

Bad news, ¢ not removed

G}@@M

Art of Multiprocessor Programming

45

Insight
If a node is locked, no one can delete the node’s successor

If a thread locks
— the node to be deleted
— and also its predecessor

then it works!

That’s why we (have to) use two locks!

Hand-Over-Hand Again

HE g CIE g (I g I g C10

OO

Art of Multiprocessor Programming 47

Hand-Over-Hand Again

Art of Multiprocessor Programming 48

Hand-Over-Hand Again

a| 3>l 3> (c[3>(a]]
=eN

O

Hand-Over-Hand Again

Hand-Over-Hand Again

6 6

Hand-Over-Hand Again

SEagtih BEagtll
=,

Art of Multiprocessor Programming 52

Removing a Node

HE g CIE g (I g I g C10

Art of Multiprocessor Programming

53

Removing a Node

BB O g (I g I g C1N

Art of Multiprocessor Programming

Removing a Node

[[F=>la[FblF> [0l

Art of Multiprocessor Programming

55

Removing a Node

BB {C1E 5og CIE g I g C10

Art of Multiprocessor Programming

56

Removing a Node

Art of Multiprocessor Programming

57

Removing a Node

Art of Multiprocessor Programming

58

Removing a Node

Art of Multiprocessor Programming

59

Removing a Node

6 6
B (OE O g e g1l

remove(b) ‘
O o . ﬂ % ; :
Art of Multiprocessor Programming 60

Removing a Node

acquire
Lock for b

acquire lock
forb

Removing a Node

Art of Multiprocessor Programming

62

Removing a Node

6 6

Art of Multiprocessor Programming 63

Proceed to
remove(b)

Removing a Node

Removing a Node

Oo,

Removing a Node

Removing a Node

([~

OO

Art of Multiprocessor Programming

67

Removing a Node

([5—(al ‘3 (o]]

Remove Method

public boolean remove(Item item) {

int key = i1tem.hashCode();

Node pred, curr;

try { Start at the head and lock it
‘pred = this.heéaf?=————
pred.lock();)

Tt = el e Lock the current node
curr.lock();

S

—_— e —— Traverse the list and
GELE B remove the item
On the

} finally { next slide!
curr.unlock(); Make sure that the
pred.unlock(); locks are released

¥
}

Remove Method

while (curr.key <= key) {
if (item == curr.item) {

pred.next = curr.next;
pred = curr;

)
return true; AJ
curr =

curr.next;
curr.lock();

false;—

}
>iored.un1ock();

}
(return

Search key range

If item found,
remove the node

Unlock pred and
lock the next node

Return false if the element is not present

Linearization Points

while (curr.key <= key) {
if _(item == curr item) {
pred.next = curr.next;

}
pred.unlock();

pred = curr;

curr = curr.next; Linearization point if
curr.lock(); . .
item Is present
[—I}*eturn false;

Linearization point if item not present

Why Does This Work?

To remove node n

— Node n must be locked

— Node n’s predecessor must be locked
Therefore, if you lock a node

— |t cannot be removed

— And neither can its successor

To add node n
— Must lock predecessor
— Must lock successor
Neither can be deleted
— |s the successor lock actually required?

Drawbacks

Hand-over-hand locking is sometimes better than coarse-
grained lock

— Threads can traverse in parallel
— Sometimes, it’s worse!

However, it’s certainly not ideal

— Inefficient because many locks must be acquired and
released

— All methods use locks
— Access to representation is pipelined

How can we do better?

Optimistic: Traverse without Locking

Optimistic: Lock and Load

Optimistic: Lock and Load

What could go wrong?

What could go wrong?

What could go wrong?

What could go wrong?

What could go wrong?

What could go wrong?

What could go wrong?

What could go wrong?

o (-

Uh-oh
O o”

Validate — Part 1

Yes, b still
reachable
from head

What Else Could Go Wrong?

What Else Could Go Wrong?

What Else Could Go Wrong?

Art of Multiprocessor Programming 88

What Else Could Go Wrong?

What Else Could Go Wrong?

Validate Part 2 (while holding locks)

Yes, b still
points to d

Optimistic: Linearization Point

Correctness

Careful: we may traverse deleted nodes
But we establish properties by
— Validation
— After we lock target nodes
If
— Nodes b and ¢ both locked
— Node b still accessible
— Node c still successor to b
Then
— Neither will be deleted
— OK to delete and return true

Optimistic Synchronization: Validation

private boolean validate(Node pred,Node curr) {
Node node = head;
while (node.key <= pred.key) {
[if (node == pred)
return pred.next == curr;

node = node.next;
1
return false;
} If pred is reached, test

if the successor is curr

Predecessor not reachable

Optimistic Synchronization: Remove

private boolean remove(Item item) {
int _key = item.hashCode();
while (true) {

Node pred = this.head; —
Node curr = pred.next; Retry on synchronization
e LEWREeley oo (vl conflict — validate fails
if (item == curr.item)
break;
pred = curr;
curr = curr.next

Stop if we find the item

On Exit from Loop

* Ifitemis present
— curr holds item
— pred just before curr
* |fitemis absent
— curr has first higher key
— pred just before curr

* Assuming no synchronization problems

Optimistic Synchronization: Remove

try {

Lock both nodes

pred.lock(); curr.lock()

T

if (validate(pred,curr))

if (curr.item == item) {

pred.next = curr.next;)| Check for synchronization
} else {

return false;

}
}
1 finally {
pred.unlock();

Remove node if target found

curr.unlock(Q;

J

h

Always unlock the
nodes

}

Optimistic List

Limited hot-spots

— Targets of add (), remove(), contains()
— No contention on traversals

Moreover

— Traversals are wait-free

— Food for thought ...

Much less lock acquisition/release

— Performance

— Concurrency

Problems

— Need to traverse list twice 90% of calls in many apps!

. € .
— contains () acquires locks

Lazy List

* Like optimistic, except
— Scan once
— contains (x) never locks ...
* Key insight
— Removing nodes causes trouble
— Do it “lazily”

Lazy List

* Key insight
— Removing nodes causes trouble
— Do it “lazily”

* How can we remove nodes “lazily”?

— First perform a logical delete: Mark current node as removed
(new!)

— 5> —H 5>

— Then perform a physical delete: Redirect predecessor’s next (as
before)

— Logically deleted nodes still hang around!

Lazy Removal

Lazy Removal

Present in list

Lazy Removal

Logically deleted

Lazy Removal

Deleted from list of reachable elements

Lazy Removal

Garbage collected when all
references used up

Lazy Synchronization

* All Methods
— Scan through locked and marked nodes
— Removing a node doesn’t slow down other method calls...

* Note that we must still lock pred and curr nodes!

* Validation:
— Check that neither pred nor curr are marked
— Check that pred points to curr

Lazy Removal

%—ﬁ[—]—ﬁl}>

Lazy Removal

Lazy Removal

Lazy Removal

:735}* el

Lazy Removal

Lazy Removal

Remove
node b!

Lazy Removal

Validate: Check that
a and b are not
marked and that a
pointsto b

Lazy Synchronization: Validation

private boolean validate(Node pred,Node curr) {
return !pred.marked && !curr.marked &&
pred.next == curr);

Predecessor still points to current

Nodes have not been logically removed

Lazy Synchronization: Remove

public boolean remove(Item item) {
int key = item.hashCode();
while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;

This is the same as before!

Lazy Synchronization: Remove

try {

pred.lock(); curr.lock(Q;

if (validate(pred,curr)) {
if (curr.item == item) {

curr.marked = true; Check for
pred.next = curr.next; synchronization
, rﬁt”"{‘ true; conflicts
else
return false;
} fir%ni'l'ly g If the target is found,

pred.unlock(); mark the node and remove it

curr.unlock(Q);

b}}

Lazy Synchronization: Contains

public boolean contains(Item item) {
int key = item.hashCode();

‘Node curr = this.head; Traverse without
while (curr.key < key) { locking (nodes may
" curr = curr.next have been removed)
return curr.key == key && !curr.marked;

N

Is the element present and not marked?

Observe: contains() is wait-free !
 Depends on boundedness of keyspace — why?

Evaluation

 Good
— The list is traversed only once without locking

— contains() is wait-free
— contains() “more common” than add() or remove ()

— Uncontended calls don’t re-traverse

e Bad
— Contended add () and remove () calls do re-traverse

— Traffic jam if one thread delays

* Trafficjam?
— If one thread gets the lock and experiences a cache miss/
page fault, every other thread that needs the lock is stuck!

— We need to trust the scheduler....

Reminder: Lock-Free Data Structures

* No matter what ...
— Guarantees minimal progress in any execution
— i.e. some thread will always complete a method call
— Even if others halt at malicious times

— Implies that implementation can’t use locks

®

Lock-Free Lists

* Next logical step

— Wait-free contains()

— lock-free add() and remove()
 Use only compareAndset()

— What could possibly go wrong?

Lock-Free Lists

Logical Removal

Use CAS to verify pointer Physical Removal
IS correct

Not enough!

Problem...

Logical Removal

Node added

The Solution: Combine Bit and Pointer

Logical Removal = Set Mark Bit

Physical removal CAS

Mark-Bit and Pointer Fail CAS: Node not added

are CASed together after logical removal
(AtomicMarkableReference)

Solution

Use AtomicMarkableReference

Atomically (" R
— Swing reference and address] F
— Update fla
p g _ v/ D
Remove in two steps Reference
— Set mark bit in next field
— Redirect predecessor’s pointer mark bit

AtomicMarkableReference class

— java.util.concurrent.atomic package

Changing State

[private object ref; The reference to the next
private boolean mark; object and the mark bit
public synchronized boolean compareAndSet(

Object expectedRef, Object updateref,
boolean expectedMark, boolean updateMark) {

1T (ref == expectedRef && mark == expectedMark) {

ret = updateRer;
mark = updateMark;

}
}

If the reference and the mark are as
expected, update them atomically

Removing a Node

Removing a Node

[I-]—*ED

Traversing the List

CAS on an AtomicMarkabTleReference marks and swaps
Marked nodes still hang around

So: what do you do when you find a marked node in your
path?

Answer: finish the job.
— CAS the predecessor’s next field

— Proceed (repeat as needed)

Lock-Free Traversal
(only Add and Remove)

pred

The Window Class

* Ancillary class to help with traversal
* Produced by find(item)
« find(Q) also removes marked nodes on the fly

w {
public Node pred;
public Node curr;

Node curr) {

this.pred = : this.curr = curr;

}

A container for pred
and current values

Using the Find Method

[W1' ndow window|= find(item);

At some instant, . or ...
[I-]—»ﬁ \ ([

pred curr succ

The Find Method

[W1' ndow window|= find(item);

. { jtem ; notin list
At some instant,

F——F

curr= null
pred succ

Remove

public boolean remove(T item) {
Boolean snip;
while (true) {
window window = findChead, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {
return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false
true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false,
false);
return true;
11}

Remove

Egﬁﬂgnb‘;ﬁ};?" remove(T item) { Eind neighbors

while (true) { -~
[:window window = find(Chead, key);

Node pred = window.pred, curr = window.curr;]
if (curr.key != key) {
return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false
true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false,
false);
return true;
11}

Remove

public boolean remove(T item) {

Boolean snip;
while (true) {

window window = findChead, key);

Node pred = window.pred, curr = window.curr;

if (curr.key I= key) {!
return false; She’s not there ...

} else {

Node succ = curr.next.getReference();

snip = curr.next.compareAndSet(succ, succ, false
true);

if (!snip) continue;

pred.next.compareAndSet(curr, succ, false,
false);

return true;

33}

Remove

public boolean remove(T item) {
Boolean snip;
while (true) {
window window = findChead, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {
return false;
} else {

Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false
true);

if (!snip) continue;
pred.next.compareAndSet(curr, su false,

fa15€3éturn true; Try to mark node as deleted
11}

Remove

public boolean remove(T item) {
Boolean snip;
while (true) {
window window = findChead, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {
return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false
true);
if (Isnip) continue;

pred.next.cogpargAndset(curr, succ, false,
false);
return true;

13} Didn’t work? Retry

Remove

public boolean remove(T item) {
Boolean snip;

while (true) {

window window = findlhead Lkav):

Node pred = window Tryto complete the removal -

if (curr.key != k-
return false: If not successful no matter,

} else { someone else will be

Node succ = curr.next.getRefepence();

snip = curr.next.compareAndSet(s , succ, false
true);

if (Isnip) continue;
[pred.next.compareAndSet(curr, succ, false,]

false);
return true;

P}

Other Methods

Check out the H&S book for:
add(1tem)

Wait-free contains (item)
— Much as the lazy list case
Lock-free find(item)

Performance

The throughput of the presented techniques has been
measured for a varying percentage of contains () calls

Benchmarked on a 16 node shared memory machine

Ops/sec (32 threads)
8106 i Lock-free
i W Lazy list
106 %i‘ “““““ B | 4 Coarse Grained
S —dy——a&——&——a & & & Fine Grained

0 10 20 30 40 50 60 70 80 90
% contains()

Low Ratio of contains ()

* The lock-free linked list and the linked list with lazy
synchronization perform well even if there are many threads
Ops/sec (50% read)

3.5-106 | . | | | |

3-10° - xS %%%% | Lock-free

. 6 L —77__%/1 ’ /,”//. N //,.,\ \\\\ .
2.5:10 %% ,."*%~'~~—x-~—-llj’. . \\l'*Q Lazy list

2-106 Faa K |
o el

15106 W 1
B
1-106 % 1

5.10° - - _
Coarse Grained

Fine Grained

m,,,,m,l,m,;_‘Q‘_;m‘_‘a,7,@,4_0_\,0,,,,&,,,[1,,,A,J,a,,,,o,,,,m,,,@
N =

0 5 10 15 20 25 30
Threads

High Ratio of contains ()

* Similar picture

Ops/sec (90% reads)
1.2:107 . . , . | |

1-107 | %%%%%
8-106 >’<>’< Fen >1<>K ;
p - L By ¥ Lock-free
- :
m-W Lazy list

I
.
\\ \\
1

6-10°

4-106

2:1068

—+—+——————— Coarse Grained
= Fine Grained
5

Threads

Summary

Concurrent linked list implementations of increasing
complexity

Optimistic — lazy — lock-free: Recurring themes
Lock-free:

— Still not ideal

— Needs atomic updates of reference/mark pairs

— Traversal more complex

Next in line:

— More complex data structures

— Scheduling, work stealing, barrier synchronization
— Software transactional memory

Instead change course to message passing concurrency

