
1

Protocols for Distributed Management

Rolf Stadler

School for Electrical Engineering
KTH Royal Institute of Technology

Nov. 28, 2011

Rolf Stadler Protocols for Distributed Management

2

Why Distributed Management Protocols?

Drivers over the last 10 years:

New requirements for management technology:
increase scalability, robustness, level of self-configuration;
reduce execution cycles.

New technologies to manage:
data center networks, cloud infrastructure and services.

New actors demanding new solutions:
Google, Amazon, Microsoft, Apple.

Enablers:

Advances in distributed computing:
gossip protocols, algorithms for virtual topologies,
understanding of protocols in dynamic environments

Enablers of network programmability:
Juniper, Cisco provide open interfaces
OpenFlow, SDN allow for programmable control and
management planes

Rolf Stadler Protocols for Distributed Management

3

Goal of the Lecture

Objectives:

Present two classes of tree-based management protocols.

Show that properties of these protocols are inherited from
fundamental algorithms underlying them.

Discuss how these protocols are building blocks for more
complex functions in the control and management planes.

Material:
A technical report covering the material of this lecture is available
at:
www.ee.kth.se/˜stadler/ProtocolsForDistributedManagement.pdf .

Rolf Stadler Protocols for Distributed Management

4

Methodology

Algorithm	 2	

Algorithm	 1	
Protocol	
(Skeleton)	

Protocol	 1	

Algorithm	 n	

Protocol	 2	

Protocol	 m	

combine	
extend	

Instan/ate	
extend	
adapt	 to	 environment	

Distributed	 synchroniza=on	
BFS	 tree	 construc=on	
Self-‐stabiliza=on	

Generic	 Tree	 protocols	
Echo,	 GAP	

Real-‐=me	 monitoring	
Detec=on	 of	 threshold	 crossings	
Global	 aggrega=on	
Resource	 loca=on	
….	

Rolf Stadler Protocols for Distributed Management

5

Outline

Approaches to Distributed Management

An Architecture for Peer-to-peer Management

The Echo Protocol for Distributed Management

The GAP Protocol for Distributed Management

Rolf Stadler Protocols for Distributed Management

6

The Centralized Management Model

Management
Station

Node

A A A

M

Management Program

Manager

Agent

P

Building block of traditional management
systems, based on manager-agent
interactions (polling or notification mode).

Used in SNMP framework.

Program P reads and writes MIB objects
using a management protocol between the
management station and network nodes.

Program P cannot be executed on
network nodes.

Rolf Stadler Protocols for Distributed Management

7

Assessment of the Centralized Management Model

Characteristics of the centralized model

Complexity of management operation is on the manager side;
agents are “dumb”.
Agents interact solely with manager, not among themselves.

Drawbacks of the centralized model

Single point of failure—the management station can fail.
The centralized model is not scalable.
Consider an operation that polls all nodes.

The management traffic generated (M: number of messages sent);
The load on the management station (L: number of request
messages generated and response messages processed);
The execution time of a management operation
(T: execution time of P);
M, L, T grow linearly with the number of managed nodes N, i.e.,
M=O(N); L=O(N); T=O(N);
for many management operations.
Example: compute max link utilization.

Rolf Stadler Protocols for Distributed Management

8

Approaches to Distributed Management

Hierarchies of (SNMP) Agents

Script-enabled Agents

Also called Management by Delegation

Mobile Agents

Peer-to-Peer Management

Rolf Stadler Protocols for Distributed Management

9

Script-enabled Agents

Management
Station

Node

download &
execute

P

A
S

A A
S S

Execution
Environment

A management program P downloads a
script S onto one or more nodes.

S runs in an execution environment (e.g.,
JVM) on the node. Results of this
execution are sent back to P.

S accesses A through a local
interface,e.g., via SNMP.

This approach is also known as
Management by Delegation.

Application scenarios: Statistical
aggregation and notification schemes.

Rolf Stadler Protocols for Distributed Management

10

Mobile Agents (1)

Management
Station

Node

results
download &
execution

P

A
MA

A A

A management program P downloads a
mobile agent MA onto a node.

MA is run on an execution environment
on the node.

MA accesses agent A through a local
interface, e.g., via SNMP.

MA can migrate to other nodes, taking its
execution state with it.

MA sends results of management
operation back to P in form of messages.

Rolf Stadler Protocols for Distributed Management

11

Mobile Agents (2)

A mobile agent is a self-contained program that can move
from node to node in a network and that acts on behalf of a
human operator or another entity.

Proposed applications scenarios for management:

Diagnosing and correcting problems on nodes,
Updating software on nodes, etc.

This approach is motivated by the potential to facilitate
scalability and automated management.

Drawbacks include security, safety, and the potential
complexity of agents.

To date, many research prototype, but few commercial
applications of mobile agents in management.

Many mobile agent platforms have been built 1995-2000.

Rolf Stadler Protocols for Distributed Management

12

An Architecture for Peer-to Peer Management

Management System

Management Plane

Managed System

management node!

network graph!

An architecture that supports the execution of distributed
management protocols.

Rolf Stadler Protocols for Distributed Management

13

The Management Plane

The management plane conceptualizes the management resources
inside the managed system.

Each network node has an associated execution environment in the
management plane, called management node, which represents
processing, memory and storage capacity.

A management node knows other nodes in its neighborhood and
communicates with them through messages.

This message network for peer interaction forms the network graph.

Management protocols in this architecture are distributed
algorithms that execute on this graph. They read and process state
information in the management nodes and produce output that is
available in one or more of them.

Rolf Stadler Protocols for Distributed Management

14

Realizing the Management Plane

A management node can be realized as a virtual machine running
(a) on a CPU inside a router,
(b) on a blade that connects to a router backplane,
(c) in an appliance that is situated close to a router.

Depending on the specific realization of the management plane, the
communication between a network element and its associated
management node can take many forms, from using primitives for
inter-thread communication to local SNMP interfaces.

The network graph on the management plane can be realized as an
overlay network.

Rolf Stadler Protocols for Distributed Management

15

Comparing Centralized Management with Distributed
Management Approaches

deployed today future networks niche applications

Rolf Stadler Protocols for Distributed Management

16

The Echo Protocol for Distributed Management

The echo protocol can be used for monitoring (distributed polling,
global state estimation), resource discovery and distributed
configuration.
Its execution can be sees as the expansion and contraction of a
wave on the network graph.

The execution starts and terminates on the root node.
The wave expands through explorer messages, which nodes
send to their neighbors.
During expansion, local operations are triggered on the nodes
after receiving an explorer.
The results of these operations are collected in echo messages
when the wave contracts.
The aggregated result of the global operation becomes
available at the root node.
During expansion, echo constructs a spanning tree on the
network graph, used for collecting and aggregating the partial
results during contraction.

Rolf Stadler Protocols for Distributed Management

17

Execution of the Echo protocol

!"#$%&'()*+,-$+%!"#$%&'(#)*+&,-*

!"#$%&!''()!%

!"#$%&'%()*$+,)!"#$%&'()*+,-+)))

!""#$%"&'))

'()*"!'!$+',,-.'$

The echo algorithm executing on a network graph.

Rolf Stadler Protocols for Distributed Management

18

The Execution Model for Protocols on the Network Graph

The network graph G = (V,E) has
bidirectional links and and is
connected.

Each node on G has a unique
identifier and can distinguish its
neighbors.

Neighbors exchange messages
(TY PE, arg1, ..., argn). They are
read in the order received.

We assume an asynchronous
execution model with bounded
delays.

Rolf Stadler Protocols for Distributed Management

19

The Echo algorithm by Segall (1)

message types:
1: (exp, from)
2: (echo, from)

data structures:
3: N := set of neighbors;

root node:
4: forall n ∈ N send (exp, root) to n;
5: while N 6= ∅ do
6: receive (echo, n);
7: N := N − {n};
8: ‘Echo completed’;

non-root node v:
1: receive (exp, n);
2: parent := n; N := N − {n};
3: forall n ∈ N send (exp, v) to n;
4: while N 6= ∅ do
5: receive exp or echo message from n;
6: N := N − {n};

7: send (echo, n) to parent;

Rolf Stadler Protocols for Distributed Management

20

The Echo algorithm by Segall (2)

The echo algorithm creates a spanning tree on the network
graph.

The initiating node is the root node of the tree.

The parent variable on each non-initiating node points to its
parent on the spanning tree.

During execution, each node sends an exp message to each
neighbor;
it receives an exp or echo message from each neighbor.

The algorithm performs a distributed synchronization function;
no numerical value is computed.

The algorithm relies only on local information.

Rolf Stadler Protocols for Distributed Management

21

The Echo protocol

It extends the echo algorithm for network management.

Each node of the network graph can be the root node of an
execution.

A local management operation is executed on each node
during the expansion phase.
The local results are aggregated during the contraction phase.
The aggregate of all results is available at the root node at
the end of the execution.
These operations are defined in the local aggregator object.

Rolf Stadler Protocols for Distributed Management

22

Echo Message Types and Aggregator Object

message types:
1: (invoke, invoker) . echo invoked by invoker
2: (return, result) . return result of echo operation
3: (exp, from) . explorer sent by sender
4: (echo, from, agg) . echo with result agg sent by sender

aggregator object A:
5: A.initiate() . initialize aggregate; perform local operation
6: A.aggregate() . aggregate result from a child
7: A.global() . perform operation on aggregate (root)
8: A.value() . return the current value of (partial) aggregate

The aggregator object captures the semantics of the management
operation.

Rolf Stadler Protocols for Distributed Management

23

Echo Protocol: Main Loop

1: procedure echo()
2: N := set of neighbors of node v;
3: visited :=false; . no exp received
4: while true do
5: receive message;
6: switch (message)
7: case (invoke, invoker): . v is root
8: ...
9: case (exp, from):

10: ...
11: case (echo, from, agg):
12: ...
13: end switch

Pseudocode for node v.

Rolf Stadler Protocols for Distributed Management

24

Echo Protocol: message processing

1: case (invoke, invoker): . v is root
2: A.initiate();
3: if N 6= ∅ then . v is only node in G
4: send (exp, v) to nodes in N ;
5: else
6: send (return, A.global()) to invoker;

7: case (echo, from, agg):
8: A.aggregate(agg);
9: N := N − {from};

10: if N = ∅ then
11: if v 6= root then
12: send (echo, A.value()) to parent;
13: else
14: send (return, A.global()) to invoker;

Rolf Stadler Protocols for Distributed Management

25

Echo Protocol: message processing

1: case (exp, from):
2: N := N − {from};
3: if not visited then
4: visited := true;
5: parent := from;
6: A.initiate();
7: if N 6= ∅ then
8: send (exp, v) to nodes in N ;
9: else

10: send (echo, A.value()) to parent; . v is a leaf

11: else
12: do nothing; . from is not neighbor of v on tree

Rolf Stadler Protocols for Distributed Management

26

Echo Aggregator: MaxLoad()

1: aggregator object MaxLoad()
2: var: maxLoad: int; . the maximum link load locally known
3: lmax: linkId; . link with maximum load locally known

4: procedure initiate()
5: L := set of outgoing links;
6: maxLoad := maxlink∈Lload(link);
7: lmax := link in L with value maxLoad;

8: procedure aggregate([childLoad: int; lchild: linkId])
9: if childLoad > maxLoad then

10: lmax := lchild;
11: maxLoad := childLoad;

12: procedure value()
13: return ([maxLoad, lmax])

14: procedure global()
15: return ([maxLoad, lmax]) . no function applied on aggregate

16: function load(l: linkId)
17: return current load on link l;

Rolf Stadler Protocols for Distributed Management

27

Echo Aggregator: AverageLoad()

1: object AverageLoad()
2: var: sumLoad := 0; . total load of the (sub)tree rooted v
3: nLinks := 1; . number of network links of the (sub)tree

4: procedure initiate()
5: L := set of outgoing links;
6: sumLoad :=

∑
link∈L load(link);

7: nLinks := |L|;
8: procedure aggregate([sumLoadChild: int; nLinksChild: int])
9: sumLoad := sumLoad+ sumLoadChild;

10: nLinks := nLinks+ nLinksChild;

11: procedure value()
12: return ([sumLoad, nLinks])

13: procedure global()
14: return (sumLoad/nLinks)

15: function load(l: linkId)
16: return current load on link l;

Rolf Stadler Protocols for Distributed Management

28

Echo-based Management operations(1)

Application: Distributed polling or estimation of a global aggregates.
Echo can compute a global function F = F (x1, ..., xN) on local variables
xi, i = 1, . . . , N , whereby each variable xi is associated with a node of
the network graph.
F can be computed in a single execution of echo:

If F can be written using a binary function f that is both
commutative (f(x, y) = f(y, x)∀x, y) and associative
(f(x, f(y, z)) = f(f(x, y), z)∀x, y, z). Example: sum().

average(), which is not associative, can be computed as
average(x1, ..., xN) = sum(x1, ..., xN)/count(x1, ..., xN)

If F has form F = (N(m1), ..., N(mk), whereby m1, ...,mk are the
possible values for xi, N(mi) is the number of occurrences of mi.
Example: histogram().

Assumption: time-scale of change of local variables is large compared
with execution time of echo.

Rolf Stadler Protocols for Distributed Management

29

Echo-based Management operations (2)

Application: Network Search.
Echo traverses network graph during execution and performs local search
on each node.
Example: find set of routers that run IOS version x.y.

Application: Perform operations on nodes with given properties.
Similar to network search, with different local operation.
Example: update module z on all routers that run IOS version x.y.

Rolf Stadler Protocols for Distributed Management

30

Performance of echo-based operations(1)

Performance metrics are obtained from properties of the echo algorithm,
assuming bounds on communication delays between nodes and processing
delays for local message processing.

Management traffic M (message complexity): Protocol execution
generates a balanced load on the network graph G = (V,E), with 2
messages traversing each link in opposite direction. M = 2 ∗ |E|
messages. The message sizes depends on the specific aggregation
function.

Processing load L: We measure load on a node as number of
incoming messages. Load increases proportionally with the number
of neighbors of a node, i.e., its degree. Or: L = O(deg(G)).
(deg(G) is the max degree of any node on G).

Execution time T (time complexity): The execution time increases
linearly with the height of the spanning tree, which is bounded by
the diameter of the network graph, diam(G).
T = O(diam(G)) and T = O(deg(G)).

Rolf Stadler Protocols for Distributed Management

31

Performance of echo-based operations(2)

Comparing centralized management operation with echo-based operation:

For a network graph with diam(G) = O(log(N)), echo exhibits
M =2 messages per link, L ≤ deg(G) messages per node,
T = O(log(N)).
We call echo scalable on G with respect to the metrics M,L, T , since
these metrics increase less than linear with the network size N .
For a management operation executed in the centralized model with
polling, the management station experiences:
M = 2N messages, L = 2N messages, T is proportional to 2N .

In small networks a centralized management operation can be more
efficient than an equivalent echo-based operation.
In large networks (> 1000 nodes) an echo-based operation can
significantly outperform a centralized one. The gain in scalability comes
at the cost of a more complex management infrastructure.

Rolf Stadler Protocols for Distributed Management

32

Extensions for practical applications

The echo protocol must be extended and adapted for operational use.
Examples:

Concurrent execution. An invocation identifier allows for running
several echo operations simultaneously in the management plane.

Restricted scope. In a large network, the scope can be restricted,
e.g., to n hops from root. (Consider that nodes with maximum hop
count from the root may be involved more than once in the same
execution.)

Stationary tree. For echo-based periodic polling from the same root
node, keep the spanning tree alive between runs. (The solution
must maintain the tree in case the network graph changes.)

Robust echo. The presented version of echo is not robust to certain
changes to the network graph that result from node churn or
failures. Possible approach to crash failures: introduce an event,
triggered either by a timeout or a failure detector, that lets a
waiting node resume protocol operation.

Rolf Stadler Protocols for Distributed Management

33

The GAP Protocol for Distributed Management

The GAP protocol (Generic Aggregation Protocol)

executes on a bidirectional, connected network graph;

provides a continuous estimate of a global aggregate, computed
over local variables across all nodes;

dynamically adapts to node churn and node failures;

allows controlling the tradeoff between protocol overhead and
estimation accuracy, by limiting the message rate on the network
graph.

Its primary use is continuous real-time monitoring. It is a push protocol
where updates to the local variables are ‘pushed’ upwards the tree
towards the root. (Echo performs one-time estimations through polling.)
GAP creates a BFS (Breath-First Search) spanning tree on a connected
network graph, which is used to perform incremental, distributed
aggregation, with the result at the root.
Distributed algorithms that underlie GAP: Belman-Ford algorithm, DIM
algorithm, tree-based aggregation algorithm.

Rolf Stadler Protocols for Distributed Management

34

Execution of the GAP protocol

F(t)=F(x1(t),…...., xN(t))! Aggregate!

xi(t)!

GAP!

xl(t)!

xj(t)!

F(t)!

The GAP protocol executes on the network graph and continuously
computes a global function F (t) = F (x1(t), ..., xN (t)) on the local
variables xi(t), i = 1, ..., N(t).

Rolf Stadler Protocols for Distributed Management

35

The Distributed Bellman-Ford Algorithm

messages:
1: (update, n, l); . node n has distance l from root

root node:
2: level := 0; parent:=root;
3: send (update, root, 0) to all neighbors on G;

non-root node v:
4: level :=infinite; parent :=undef;
5: while true do
6: read (update, n, l);
7: if (level > l + 1) then
8: level := l + 1; parent := n;
9: send (update, v, level) to all neighbors except parent;

Rolf Stadler Protocols for Distributed Management

36

The Distributed Bellman-Ford Algorithm (2)

The algorithm constructs a BFS (Breath-First Search) spanning tree on a
connected network graph. A BFS tree connects each node to the root
with a shortest path (e.g., minimal number of hops).

Each node maintains a level variable that indicates its distance to
the root and a pointer to its parent node.

The algorithm builds a spanning tree in a distributed fashion,
starting from the root and continuing towards the leafs. The tree is
encoded in the parent variables.

Nodes exchange messages (update, n, level), conveying that node
n has (believed) distance level from the root.

The algorithm guarantees that the variables level and parent
eventually contain correct values, once no more messages are
exchanged.

The algorithm has a time complexity of O(diam(G)) and a message
complexity of O(N ∗ |E|) in an asynchronous model.

Based on this algorithm, GAP builds up the spanning tree during
initialization.

Rolf Stadler Protocols for Distributed Management

37

The DIM Algorithm

messages:
1: (update, n, l); . node n has distance l from root

root node:
2: level := 0; parent :=root;
3: send (update, root, 0) to all neighbors on G;

non-root node v:
4: while true do
5: read (update, n, l);
6: leveln := l;
7: Among all neighbors of v with the smallest level,

choose node with the smallest index k
8: newlevel := levelk + 1; parent := k;
9: if (newlevel 6= level) then

10: send (update, v, level) to all neighbors on G;
11: level := newlevel;

Rolf Stadler Protocols for Distributed Management

38

The DIM Algorithm (2)

The algorithm, developed by Dolev, Israeli and Moran, is self-stabilizing:
If the root has the correct level, then, independent of initial values for
parent and level 6= 0, eventually, the parent pointers form a BFS tree,
and the level variables contain the correct distance to the root.
DIM can be seen as a version of Belman-Ford where the the variables
parent and level of non-root nodes are initialized with random values.
Other differences to Belman-Ford are:

A non-root node maintains a variable leveln for each neighbor n.

A node identifies its neighbors through local indices. Among the
neighbors with minimal level, the one with the smallest index is
chosen as parent. (DIM and Belman-Ford may produce (slightly)
different trees.)

The update message is sent to all neighbors, including parent,
as a node has knowledge about the level of all neighbors.

GAP makes use of DIM to create the BFS tree and maintain it in
response to node churn and node failures.

Rolf Stadler Protocols for Distributed Management

39

The Algorithm for Incremental Aggregation on a Tree

Incremental aggregation on a tree: the aggregate is computed
bottom-up, from the leafs to the root. The aggregation function is sum
in this example.
In GAP, the aggregation function is defined in the aggregator object.

Rolf Stadler Protocols for Distributed Management

40

The GAP Neighborhood Table

Rolf Stadler Protocols for Distributed Management

41

GAP Neighborhood Table and Aggregator Object

GAP neighborhood table:
T : table with rows (node, status, level, aggregate)

table methods:
addEntry(n, s, l, a) . add entry for node n
removeEntry(n) . remove entry for node n
updateEntry(n, l, p, a) . update entry for node n
updateVector() : (l, p, a) . give level, parent, aggregate of node
restoreTableInvariant() . maintain BFS tree

Aggregator object A
A.initiate() . initiate update messages of change to local variable
A.aggregate() . compute the (partial) aggregate of this node
A.global() . perform an operation on the aggregate (root node)

Rolf Stadler Protocols for Distributed Management

42

The GAP Protocol, node v

messages:
1: (new, n) . new neighbor n detected
2: (fail, n) . neighbor n failed
3: (update, n, l, p, a) . node n has aggregate a, level l, parent p
4: (localvar, x) . the local variable has value x

5: procedure GAP()
6: T :=empty table;
7: if v =root then
8: addEntry(root, parent, -1, undef);
9: addEntry(root, self, 0, undef);

10: else
11: addEntry(v, self, undef, undef);

12: vector :=updateVector();
13: send (update, v, vector) to all neighbors;
14: A.initiate();
15: while true do
16: ...

Rolf Stadler Protocols for Distributed Management

43

The GAP while loop

1: while true do
2: read message;
3: switch (message)
4: case (new, from):
5: addEntry(from, peer, undef, undef);
6: send (update, v, vector) to from;

7: case (fail, from):
8: removeEntry(from);

9: case (localvar, x):
10: empty;

11: case (update, from, level, parent, aggregate):
12: updateEntry(from, level, parent, aggregate);

13: end switch
14: restoreTableInvariant();
15: A.aggregate(); if (v =root) then A.global();
16: newvector :=updateVector();
17: if newvector 6= vector then
18: send (update, v, newvector) to all neighbors;
19: vector := newvector;

Rolf Stadler Protocols for Distributed Management

44

From the DIM Algorithm to the GAP protocol

Spanning tree construction and maintenance:

The DIM variables level, leveln and parent values are stored in the
GAP neighborhood table.

The DIM computation of level and parent is contained in

restoreTableInvariant()
1: Among all neighbors of v with the smallest level,

choose node with the smallest index k
2: level := levelk + 1; parent := k;

New message types new and fail capture node addition and
failure.
Adding a node to or removing it from the network graph ”corrupts”
the spanning tree, which is ”re-built” using DIM’s self-stabilizing
property.

GAP sends a message to neighbors only when local state changes.

Introducing incremental aggregation of local variables.

An aggregator object defines the aggregation function.
The message localvar indicates a change in local variable.

Rolf Stadler Protocols for Distributed Management

45

Performance of the GAP protocol (1)

Performance metrics are obtained from properties of the GAP algorithm,
assuming bounds on communication delays between nodes and processing
delays for local message processing.

Management traffic M and processing load L: For GAP with rate
control, M is limited to r messages per sec for each link on the
network graph G. The maximum possible processing load on a
node, measured in incoming messages per sec, L = O(r ∗ deg(G)).
r can be used to control both M and L. Both metrics become
independent of the network size (for graphs with bounded degree),
which makes GAP suitable for large networked systems.

Time for initialization: The time from starting the protocol on all
nodes to the root having the correct aggregate is proportional to the
height h of the aggregation tree and thus proportional to the
diameter diam(G) of the network graph (if the local values do not
change during initialization).
h rounds are needed for the node with the longest distance from the
root do have the correct level information; an additional h rounds
for an update from that node to reach the root.

Rolf Stadler Protocols for Distributed Management

46

Performance of the GAP protocol (2)

Time for update of aggregate and reconfiguration due to node
churn or failure: An update to a local variable triggers an update of
the aggregate on the root within h rounds. Adding a node or
removing a node takes at most 2 ∗ diam(G) rounds, until the
spanning tree has adapted to the new topology of G.

Dependence on the on network graph: Most performance metrics
depend on the topology of G, in a similar way as the performance of
echo does. The traffic and processing loads, initialization, update
and reconfiguration times, all depend on the topology of the
spanning tree, which, in turn depends on G.
For a network graph with diam(G) = O(log(N)), the initialization
time, the update time and the reconfiguration time of GAP are all
O(log(N) ∗ deg(G)).

Rolf Stadler Protocols for Distributed Management

47

Extensions for operational use (1)

While the GAP pseudocode contains a complete protocol, it should be
regarded as a skeleton for a practical implementation.

Invocation parameters: Some examples: parameters that identify
the root node, the specific aggregator, the local variable(s) to be
aggregated, the scope, the maximum message rate r for
communication between neighboring nodes, etc. Also, the protocol
must be extended to enable multiple concurrent invocations and to
include a mechanism for terminating an invocation.

Robustness to node churn and crash failures: Since GAP is
self-stabilizing, it is robust to node churn and crash failures, if the
network graph stays connected. The root node can neither leave nor
fail. Further attention is needed:

during the transition phase when the tree reconstructs,
significant errors in estimating the aggregate can occur;
root failures must be handled;
the case of partitioning of the network graph must be handled.
GAP runs correctly on the subgraph that contains the root,
not on the other subgraphs.

Rolf Stadler Protocols for Distributed Management

48

Extensions for operational use (2)

Synchronized aggregation. GAP accurately estimates aggregates
assuming that computational and communication delays can be
neglected. This assumption holds for many scenarios. Otherwise, to
avoid errors, GAP must be be extended. (See report.)

Distance metrics other than hop count: GAP keeps executing
correctly when the distance metric, which determines a node’s
level, is changed, for instance to link delay. This is due to the
properties of the Bellman-Ford algorithm.

Global aggregate available on all nodes: GAP computes the global
aggregate at the root node only; One can extend the aggregation
mechanism in an elegant way so that the global aggregate becomes
available on all nodes. (See assignments.)

Rolf Stadler Protocols for Distributed Management

49

Assignment 1: Echo Aggregators

Assume that each router in a network domain maintains a table that lists
the current IP flows through the router in the following form:
(flowId, protocol, bandwidth, next hop).

Write two echo aggregators, as follows:
(a) MaxFlowBw() identifies the flow with the highest bandwidth in the
network and computes the path of this flow through the network.
(b) BwPercentage() computes the percentage of bandwidth currently
used by various protocols. (Compute this by summing up, for each
protocol, the bandwidth over all flows.)

(c) Determine the size of the echo messages from these two aggregators.

Rolf Stadler Protocols for Distributed Management

50

Assignment 2: Robust Echo

Write a version of the echo protocol that is robust to node (crash)
failures.
During the execution of robust echo, one or more non-root nodes may
fail. After execution, robust echo sends the result of the operation to the
invoking node, together with a flag that indicates whether a failure
occurred. Use the same approach as the GAP protocol, by introducing a
message type (fail, n) whereby a failure detector sends a message to all
neighbors of node n after node n fails.

Rolf Stadler Protocols for Distributed Management

51

Assignment 3: GAP with global aggregate on all nodes

Modify the GAP protocol so that each node locally computes the global
aggregate.
A naive approach to this problem is one where the root broadcasts
updates to the global aggregate, using the spanning tree.
You should follow a second approach, based on the idea that each node v
on the spanning tree can be seen as the root of an aggregation tree with
the same topology as the spanning tree. To compute the global aggregate
at v, apply the same mechanism that GAP uses to compute the global
aggregate at the root node of the spanning tree. For each neighbor n on
the tree, v computes a separate value for the aggregate in the update
vector sent to n. This value is computed as the aggregate over the local
variable of v and the aggregates of all its neighbors except n.
Compare the naive solution and your solution with respect to the
communication overhead and the update time for an update of a single
local variable.

Rolf Stadler Protocols for Distributed Management

52

References (1)

The Segall echo algorithm is discussed in:

A. Segall.

Distributed network protocols.

IEEE Transactions on Information Theory, 29:23–35, 1983.
Echo and related algorithms are discussed in:

G. Tel.

An Introduction to Distributed Algorithms.

Cambridge University Press, second edition edition, 2000.
The distributed Belman-Ford algorithm is discussed in:

D. Peleg.

Distributed Computing. A Locality-Sensitive Approach.

SIAM Monographs on Discrete Mathematics and Applications, 2000.
The DIM algorithm is discussed in:

S. Dolev.

Self-Stablilization.

MIT Press, 2000.

Rolf Stadler Protocols for Distributed Management

53

References (2)

An extension of echo for flow monitoring using an SQL interface:

K.S. Lim and R. Stadler.

Real-time views of network traffic using decentralized management.
In 9th IFIP/IEEE International Symposium on Integrated Network Management (IM 2005), 2005.

The GAP protocol is introduced in:

M. Dam and R. Stadler.

A generic protocol for network state aggregation.
In RVK 05, Linkping, Sweden, June 14-16, 2005.

Various extensions of the GAP protocol:

A. Gonzalez Prieto and R. Stadler.

A-gap: An adaptive protocol for continuous network monitoring with accuracy objectives.
Network and Service Management, IEEE Transactions on, 4(1):2–12, June 2007.

F. Wuhib, M. Dam, and R. Stadler.

Decentralized detection of global threshold crossings using aggregation trees.
Computer Networks, 52(9):1745–1761, February 2008.

D. Jurca and R. Stadler.

H-gap: Estimating histograms of local variables with accuracy objectives for distributed real-time
monitoring.
Network and Service Management, IEEE Transactions on, 7(2), June 2010.

Rolf Stadler Protocols for Distributed Management

