
DD2452 Formal Methods

Examination Problems
with partial solutions
12 March 2008

Dilian Gurov
KTH CSC

tel: 08-790 8198

1. Consider the following program Euclid for computing the greatest common divisor gcd(m,n) of two 4p
positive integers m and n:

while (x != y) {
if (x < y) {

y = y − x;

} else {
x = x− y;

}
}

(a) Specify the program for total correctness by means of a pre- and post-condition. The specification
should meaningfully express the purpose of the program without knowing its text.
Solution: Pre-condition x ≥ 1 ∧ y ≥ 1 ∧ x = x0 ∧ y = y0, post-condition x = gcd(x0 , y0).

(b) Verify that the program meets its specification. Present the proof as a proof tableau. Clearly
identify the invariant and the variant of the while loop.
Solution: With invariant x ≥ 1 ∧ y ≥ 1 ∧ gcd(x , y) = gcd(x0 , y0) and variant x + y it is
straightforward to complete the annotation.

(c) Identify and justify the resulting proof obligations.
Solution: Straightforward; justifications use simple properties of gcd(m,n), most importantly:
m ≥ 1 ∧ n ≥ 1 ∧m < n → gcd(m,n) = gcd(m,n −m) and
m ≥ 1 ∧ n ≥ 1 ∧m = n → gcd(m,n) = m.

2. Let Atoms = {entry, active, request, response} be a set of atomic propositions, and let M = (S,→, L) 4p
be a model over Atoms defined by states S = {s0, s1, s2, s3}, transitions →= {(s0, s1), (s1, s0), (s1, s2),
(s2, s3), (s3, s1)} and labelling function L = {(s0, {entry}), (s1, {active}), (s2, {active, request}),
(s3, {active, response})}. This could be seen as a rudimentory model of a bank teller machine. For
every property listed below, suggest a formalisation in LTL (or argue why there cannot be such), and
determine its validity on state s0 by referring to the formal semantics of LTL formulas (see handouts).
For formulas that do not hold, provide a counter-example by means of an infinite path not satisfying
the formula.

(a) infinitely often active;
Solution: GF active, valid on s0.

(b) infinitely often entry;
Solution: GF entry, not valid on s0, counter-example: s0s1s2s3s1s2s3 . . .

(c) one can always reach entry;
Solution: this property is not expressible in LTL, since it quantifies existentially over paths.

(d) every request is eventually followed by a response;
Solution: G (request → F response), valid on s0.

(e) if from some point on never request, then infinitely often entry;
Solution: FG ¬request → GF entry, or G (G ¬request → F entry), valid on s0.

(f) response only if request some time before.
Solution: (G ¬response) ∨ (¬response U request), valid on s0.

3. Consider the following concurrent program CFact for computing the factorial m! of a positive inte- 9p
ger m:

y1 = 1;

y2 = 1;

z = 0;

cobegin

while (z < x− 1) {
z = z + 1;

y1 = y1 ∗ z;

}
‖ while (x > z + 1) {

y2 = y2 ∗ x;

x = x− 1;

}
coend;

if (z < x) {
z = z + 1;

y1 = y1 ∗ z;

} else {
skip;

};
y = y1 ∗ y2;

The idea of the algorithm is that the factorial of a number can be computed independently (and thus
concurrently) “from below” and “from above”, until the two limits (here z and x) meet. However, the
limits are not guaranteed to meet exactly, so an additional test is needed at the end. The final value
is then the product of the two partial results (here y1 and y2).

Now, verify that the program meets the specification:

Lx = x0 ∧ x > 0M CFact Ly = x0!M

(a) Present the proof as a proof tableau.
Solution: We use the notation mul(m,n) defined as

∏
m≤i≤n i when m ≤ n and as 1 otherwise.

Appropriate assertions for the control points immediately before and after the cobegin–coend
statement are, respectively:
0 ≤ z ∧ z ≤ x ∧ x ≤ x0 ∧ y1 = mul(1 , z) ∧ y2 = mul(x + 1 , x0) and
0 ≤ z ∧ (z = x− 1 ∨ z = x) ∧ x ≤ x0 ∧ y1 = mul(1 , z) ∧ y2 = mul(x + 1 , x0)
We can now apply the Owicki-Gries rule for cobegin–coend with pre- and post-condition to the
first parallel branch respectively:
0 ≤ z ∧ z ≤ x ∧ y1 = mul(1 , z) and
0 ≤ z ∧ (z = x− 1 ∨ z = x) ∧ y1 = mul(1 , z)
and with pre- and post-condition to the second parallel branch respectively:
z ≤ x ∧ x ≤ x0 ∧ y2 = mul(x + 1 , x0) and

(z = x− 1 ∨ z = x) ∧ x ≤ x0 ∧ y2 = mul(x + 1 , x0)
Notice that the two pre-conditions are also suitable loop invariants. Completing the annotation
is then straightforward.

(b) Identify and justify the resulting proof obligations.
Solution: Straightforward; justifications use some simple properties of mul(m,n) and factorial:

mul(1 ,m) ∗mul(m + 1 ,n) = n! whenever 0 ≤ m ≤ n
mul(1 ,m + 1) = mul(1 ,m) ∗ (m + 1) whenever 0 ≤ m

mul(m,n) = m ∗mul(m + 1 ,n) whenever 0 ≤ m ≤ n

(c) Identify all critical formulas, and show one case of non-interference: pick a critical formula from
the first parallel command and the assignment statement x = x − 1 from the second parallel
command, and show that the statement does not interfere with the formula.
Solution: There are 4 critical formulas in each parallel branch. Pick for instance the first critical
formula 0 ≤ z∧z ≤ x∧y1 = mul(1 , z) from the first parallel command. We need to proof validity
of the Hoare triple:

L0 ≤ z ∧ z ≤ x ∧ y1 = mul(1 , z) ∧ z ≤ x − 1 ∧ x − 1 ≤ x0 ∧ y2 = mul((x − 1) + 1 , x0)M
x = x− 1
L0 ≤ z ∧ z ≤ x ∧ y1 = mul(1 , z)M

which is straightforward.

4. Consider the CCS processes P and Q defined by: 7p

S
∆= p.v.S

A
∆= p.(v.A + a.c.0)

B
∆= p.(v.B + b.d.0)

P
∆= (A | S | B)\{p, v}

Q
∆= a.c.0 + b.d.0

(a) Derive formally the immediate transitions of process P by referring explicitly to the CCS transi-
tion rules (see handouts). Don’t forget to annotate your derivation(s) with rule names.
Solution: There are two immediate transitions of process P , namely:
P

τ−→ ((v.A + a.c.0) | v.S | B)\{p, v} and
P

τ−→ (A | v.S | (v.B + b.d.0))\{p, v} (derivations omitted).

(b) Explore the whole state space of P , and draw the graph of the labelled transition system induced
by P .
Solution: The state space of P contains 8 process terms (omitted).

(c) The execution of process P will not reach itself again, but rather its defining term (A | S |
B)\{p, v}. But conceptually, we would like to identify the latter term with the initial state (that
is, process P). Suggest a meaningful rule that remedies this and allows P to be re-visited.
Solution: We could add the rule:

Def2
E

α−→ F

E
α−→ A

A
def= F

(d) Draw the graph of the labelled transition system induced by process Q. Prove P ≈ Q by exposing
a suitable relation R for which you show that it is a weak bisimulation.

(e) Process P can be seen as providing a means of achieving the effect of sequential choice “+”
between two concurrent behaviours, here represented by processes a.c.0 and b.d.0, by means of
a semafor S. Do you see any drawbacks of such a solution, as compared to sequential choice?
Could there potentially be a better solution, if the task is to synchronize concurrent behaviours?
Give an intuitive justification for your answers.
Solution: This form of choice suffers from the drawback of containing livelock behaviours. Even
worse, it contains a livelock behaviour that never offers action a to the environment, and another

one that never offers action b. On the other hand, there is no livelock-free solution to the problem.
Still, it could be a better solution to offer actions a and b alternatingly:

S2
∆= pA.vA.pB.vB.S2

A
∆= pA.(vA.A + a.c.0)

B
∆= pB.(vB.B + b.d.0)

P
∆= (A | S2 | B)\{pA, vA, pB, vB}

5. Consider the labelled transition system T = (S,Act,→) with states S = {s0, s1}, actions Act = {a, b}, 4p
and transition relation→= {(s0, a, s0), (s0, b, s1), (s1, b, s0)}, and consider the modal µ-calculus formula
Φ = µZ. [a]ff ∨ (〈b〉 tt ∧ [b]Z). (See handouts.)

(a) Compute the first three fixed–point approximants of Φ. Simplify these as much as possible.
Solution: The first three fixed–point approximants of Φ are:

µZ1. [a]ff ∨ (〈b〉 tt ∧ [b]Z) = [a]ff ∨ (〈b〉 tt ∧ [b]ff)
= [a]ff

µZ2. [a]ff ∨ (〈b〉 tt ∧ [b]Z) = [a]ff ∨ (〈b〉 tt ∧ [b] [a]ff)
µZ3. [a]ff ∨ (〈b〉 tt ∧ [b]Z) = [a]ff ∨ (〈b〉 tt ∧ [b] ([a]ff ∨ (〈b〉 tt ∧ [b] [a]ff)))

(b) Based on the formal semantics of the modal µ-calculus, explain the intuitive meaning of the
formula.
Solution: The formula expresses the property “on all b-paths, eventually a is not enabled”.

(c) Use the proof system for the modal µ-calculus to prove s0 `T Φ. In your proof, clearly identify
the rule applied at each step.

6. Prove the following implication on LTL formulas by referring to the formal semantics of LTL formulas 2p
(see handouts):

GFp ∧ FGq → FG (Fp ∧ q)

Solution: (Sketch) We assume π |=M GFp ∧ FGq for an arbitrary path π of an arbitrary model M,
and then show π |=M FG (Fp ∧ q) by referring to the formal semantics of LTL formulas and by simple
logic.

