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Abstract

We use the layered structure of communication protocols to derive a verification
methodology in CCS. This methodology is applied to the Media Access Sublayer in
a Carrier Sense,’ Multiple Access with Collision Detect protocol. The formal verifi-
cation step is performed automatically by a program. We discuss the limitations of
the methodology and the deficiencies (for verification purposes) of the official protocol
standard definition.

1 Introduction

The purpose of this paper is twofold, First, we want to presént an introductory example of
- protocol verification with CCS. Second, we want to examine the synchronisation properties
" ofa CSMA /CD protocol. In this section we describe how communication protocols are

usually structured, and how this structure relates to formal verification in CCS. The reader

should be familiar with the basics of CCS as presented in [1].

A communication protocol is a procedure used by computers to communicate with one
. another. As a means of reducing the complexity of protocols, the concept of modular, or
. layered, design has gained wide acceptance. Most communication networks are organised
" as a series of layers. The layers are distributed over all computers in the network. The
purpose of each layer is to offer certain services to the layers above it. A particular layer
accomplishes this by using the services of the layers below it. :

As an example, consider ISO:s Open System Interconnection Reference Model (the OS5I
model). The physical layer is concerned with transmitting data bits over a communication
medium. The task of the data link layer is to take sucha transmission facility and transform
it into a line that, to the network layer, appears free of transmission errors. The network
layer controls the routing of messages between different hosts (computers). The control of
data transportation from source to end destination is performed by the transport layer, This

layer can establish and destroy connections between processes running on different hosts.

' A layer can be viewéd in an abstract way, as in figure 1. A layer n consists of protocol
entiies communicating over a medium, which is actually the set of lower layers. The rules
and conventions used in the interaction between the protocol entities to provide the service of
the layer constitute the layer n protocol, In reality, no data are directly transferred between
the protocol entities. Instead, data and control information are passed to the (n—1)% layer
in the same host. This procedure is repeated for each layer, until the lowest layer (which
might be an electrical wire) is reached.

The service specification of layer n is the input/output behaviour of the layer as seen
from layer n 1. Tt is usually based on a set of service primitives which, in an abstract
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Figure 1: An abstract view of a layer

way, describe the operations at the interface through which the service is provided. Not
that a service primitive is always a communication event between two processes in the sax
computer.

In CCS, service primitives correspond to observable actions. A service specificatic
can be defined by an agent over such actions. In a data link protocol, for example, tk
service primitives would be sendmessage(m) and receivemessage(m) (here m is an obje
of a suitable datatype “message”). A simple service specification might be that the lay:
should behave as a perfect buffer. In CCS, this can be formally defined:

ServiceSpec = sendmessage(m).receivemessage(m).ServiceSpec

~ The service specification gives no guidance on how to actually implement layer n. Th
guidance is, to a certain extent, provided by the protocol specification of layer n. Th
protocol specification lists the protocol entities (in the general case there may be more tha
two) and defines the interconnection structure. Furthermore, it-defines the input /outpu
behaviour of each entity. Usually, it also contains the specification of the service provided b
the layers below, i.e. the service specification of layer n—1. This abstract “implementation
should not be confused with the real implementation of the entities, i.e. program coding ¢
hardware implementation.

In CCS, the input/output behaviour of the protocol entities can be defined by agents
the actions of these agents are either to accept service primitives from above, i.e. layer :
primitives, or o issue service primitives to below, i.e. layer n — 1 primitives. As an exam
ple, consider a simple sender of a data link protocol: the sender accepts a message throug]
the primitive sendmessage (a layer n primitive) and repeatedly transmits it through trans
miimessage until an acknowledgment through acknowledgmessage (layer n — 1 primitives
arrives. The CCS specification is:

Sender = sendmessage(m).Sender'(m)
Sender'(m) = transmitmessage(m).(Sender’(m) + acknowledgmessage.Sender)

A wverification of the layer n protocol is a formal proof that the layer n protocol spec
ification implies the laver n service specification. In CCS. this means ta verifv that +h
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Figure 2! A metwork with several stations interconnected through a shared medium

agent corresponding to the service specification is observation equivalent with the protocol
specification, The protocol specification is obtained by composing all protocol entities in
parallel with the service specification of layer n— 1, and restricting on the layer 1 — 1 service
primitives (these are neither observable nor accessible from layer n + 1).

In short, the methodology for verification of protocols in CCS is as follows:

1. Define a set of actions L,, wher'e each action corresponds to a service primitive of layer
n. Similarly, define L,_; as the set of actions corresponding to service primitives of

layer n — 1.
2. Define the following CCS agents:

S5, The service specification of layer n (this agent has sort L,).
58,1 The service specification of layer n — 1 (this agent has sort L,_4).

PE,,...,PE; One agent for each of k protocol entities (each agent has sort L,UL,_; ).

3. Prove in CCS that
S8y~ (PEy |+ | PE; | $5,-1)\ Ly

The actual verification is step 3, which can be done completely within the CCS formalism. If
all the involved agents are finite state, the observation equivalence is decidable in polynomial
time ([2]). We have developed a program to perform this formal verification automatically.
From a practical -point of view, the first two steps (the description of service primitives
and protocol behaviour in CCS) are equally important and often quite difficult. These
descriptions should be faithful to existing protocol definitions which are not necessarily
expressed in a formally rigid way. Thus it is not always possible to formally verify that
steps 1 and 2 are done correctly.

We will devote the next section to an example of protocol verification: the media access
sublayer of a CSMA/CD protocol.

2 The CSMA /CD Protocol

The CSMA./CD (Carrier Sense, Multiple Access with Collision Detect) protocal is intended
for use in high speed local area networks. Several stations are connected to a shared medium,
which can contain at most one message at a time (cf. figure 2). When one station wants
fo communicate with another, it transmits a message on the medium. If, after initiating
a transmission, the message collides with that of another station (ie. another station
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attempts to transmit at the same time), then both messages are lost. Following a collision,
each station waits for a random amount of time before attempting to transmit again. We
base our service and protocol specifications on the official standard definition ([3]), and defer
a discussion on the accuracy of our CCS model to section 4. -

An overview of the structure of the protocol, and the relation with the OSI model is
shown in fgure 3. We choose to study the Media Access Control (MA.C) sublayer. The MAC
communicates with the Logical Line Control (LLC) by accepting or delivering messages.
After accepting a message, the MAC repeatedly transmits it to the PLS, until it is delivered
intact, i.e. no collision occurs during transmission. The PLS notifies the MAC with a
“collision detect” signal in case of collision.

2.1 Service Specification

For simplicity, we will consider the case when twe identical stations are connected. We will
ignore the actual message contents and focus on the synchrenisation properties.

The service provided by MAC is error free bidirectional communication. We model this as
follows: MAC accepts messages from LLC on the channel send and delivers messages to LLC
on the channel rec. We use indexing to distinguish between channels in different stations.
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Figure 5 MAC sublayer sérvice specification

Also, we distinguish output events on a channel by appending an exclamation mark (!} to

the channel name, and input events by appending a question mark (7). Thus, the service

primitives are send;? and rec;! in one station, and sendy? and recy! in the obher. Figure

4 gives an overview of the service. We describe the error free bidirectional communication

by one unidirectional buffer in each direction. The official standard definition makes no

attempt to further define the synchronisation properties of the service. However, we make .
the following observations:

e There can be at most two cutstanding messages (i.e. messages that have been sent
but not received) in every buffer.

o The buffers are not completely independent. They share a common critical resource
(namely the medium). Message transport can only occur after a buffer has gained
access to this resource. There can be two outstanding messages in a buffer only if that
buffer has access to the resource.

We model the service specification by two unidirectional buffers, each with a capacity of two
messages. Byz transports messages from station 1 to station 2, and B, transports messages
from station 2 to station 1. The two buffers are synchronised with a semaphore S. After
accepting a message in one station, a buffer must perform a p-operation (waiting on the
semaphore) before delivering a message or accepting a second message. A v-operation (sig-
naling on the semaphore) is performed after every message delivery. The service specification
S5 (cf. figure 5) is expressed as
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2.2 Protocol Specification

The protocol specification for the MAC sublayer consists of two MAC entities (one in each
station) called MAC, and MAC,, interconnected by a medium M. The medium actually
consists of all sublayers below MAC (figure 6). The two MAC stations are identical; as in
the service specification we use indexing to distinguish between events in different stations,
We must formulate the behaviour of MAC in terms of communication events with LLC
and M. The communication events with LLC are the send? and rec/ events used in the
service specification. The communication events with the medium should include message
transmission, message reception and collision detection. Since a collision may be detected in
the middle of a transmission, a transmission can not be a single event, We use the following
actions to describe the events:

b The MAC begins message transmissicn to the medium,.

e The MAC terminates message transmission to the medium,

- br The medium begins message delivery to the MAGC.

er The medium terminates message delivery to the MAC.

¢ The MAC is notified that a collision has occurred on the medium.

The official standard can not be used directly to derive a CCS specification, since it is not
formulated in terms of such events. Our understanding of the standard yields the model as
described in figure 7. For clarity we have omitted the indices; in MAC; all actions should
be indexed by 1, and in MAC; indexed by 2.

Initially, a message from LLC (send?) may be accepted. The MA C initiates transmission
(b)), unless a message is in the process of being received. If the transmission is successfully
terminated (e/), then a new message may be accepted and the process is repeated. If a
collision occurs (¢f) before termination, MAC attempts retransmission after a period of
waiting. In all states (except when a message is being transmitted), a message may be
received (br?). Following such an event, MAC may not begin any transmission until all of
the message has been received (er?) and the LLC has been notified (rec/). However, MAC
may accept a transmission request from LLC (send?) in any state, unless such a request is
pending.

The operation of the medium M in terms of these actions is as follows: initially, M
may accept a transmission from one of the MAC:s (5,7 or b3?). Assume b,7; the behaviour
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following b,? is symmetric, Since the medium is half duplex, all of the message must be
transmitted and delivered (brs!, e ?,er;!) before a new message can be accepted. If the
receiving MAC attempts transmission (b,7) before all of the message has been delivered, a
collision occurs. A collision results in that both MAC':s are notified of the collision (e1! and
¢! in unspecified order), and that both colliding messages are lost, i.e. M returns to its
original state.

2.3 Verification

Let L be the set of actions {51, bry, e1, er1, ¢1, bz, bra, €2, €ma, ca}, i.e. the actions corresponding
to events in the medium. Let P (protocol specification) be defined by

P=(MAC, | MAC, | M)\L
The protocol verification is to prove (recall the definition of S5 from section 2.1):
P~SS

Using our program, this can be established automatically (the running time on a SUN
3/260 is under ten seconds). Nevertheless, it might be illuminating to see exactly why this
verification result is true. From the transition diagrams corresponding to MAC;, MAC:,
and M, a diagram corresponding to P is computed in the following way: for each state m;
in MAC,, m, in MAC,, and m in M, construct a state (mq, ms, m) in P. The transitions
between states are computed in accordance with the rules for CCS (hence, the simultaneous
execution of two complementary actions results in the unobservable action 7). The result is
presented in figure 8. The diagram corresponding to P has 35 reachable states. Transitions
going from left to right and crossing a vertical thick line are send; transitions. Similarly,
transitions from right to left crossing a thick line are recg. Transitions crossing a horizontal
thick line are send, if going downwards and rec; if going upwards. Transitions not crossing
any thick line are 7 transitions. The bottom diagram additionally indicates a partitioning
of the states: all states in a group (shaded box) are observation equivalent.

In the same way, we compute the transition diagram corresponding to S5 (figure 9), it
has 20 reachable states. The same convention for transition labels is used.

Observation equivalence between P and SS is proven by the existence of a bisimulation
relation (cf. [4]) between the state sets in the diagrams for P and §S. A bisimulation R has
the following property: whenever pRs (i.e. the states p and s are related by R) and p == p'
(i.e. p can reach p' through a sequence of transitions with the observable content a), then
s == ¢’ with p'Rs’, and symmetrically if s == s’ then p == p’ with p'Rs’. Intuitively, this
means that each transition of p can be mimicked by a transition of s and vice versa; hence
p and s can never be distinguished by an external observer.

In figures 8 and 9 the bisimulation is indicated as follows: two states are in the bisimula-
tion relation if they are in “similar” shaded boxes (where “similar” = in approximately the
same position in the diagram). In fact, SS and P are both equivalent with the simpler dia-
gram in the bottom right part of figure 9 (12 states); this diagram is obtained by replacing
each shaded box with a single state.

3 Related work

Our way to model protocols is inspired by the finite state machines with coupled transitions
in [5]. The examples and figures in this paper are from [6]. There are yet few other protocol
verifications in CCS or similar formalisms, examples include (7], [8], [9], and [10]. A similar
automatic verification tool for CCS, and principles for optimising the analysis step, are
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described in [11]. CCS is used as a semantical basis for the language LOTOS, which is
drafted by ISO as a protocol standard definition language ([12], [13]).

4 Discussion

Our point in this paper is that CCS can be used in medium sized examples to convey the
idea of abstract behaviour. The protocol verification methodology is easy to understand and
straightforward to use, but it is important to understand the limitations. Within CCS, it is
impossible to describe properties related to efficiency, throughput, and other aspects related
to real timie. Also, it is impossible to describe fairness properties and to prove absence
of “infinite chattering” or “livelocks” (but see [6] for an extension of CCS to encompass
this). Observation equivalence is a very strong verification requirement: sometimes an
equivalence based on tests (i.c. checking that P and S§ satisly the same tests) or traces
would be sufficient. Furthermore, this use of an equivalence means that the entire service
specification must be supplied in one go, and that the service must be precisely specified - it
may not contain options or “don’t care” clauses. Finally, CCS is not a full-fledged protocel
specification language. For specifications of large protocols, a language such as LOTOS
would be more appropriate. '

The CCS description of the CSMA/CD protocol (first presented in [6]) is based on the
Protocol Standard Definition ([3]). In order to present it in a compact way, we have made
some simplifications. The actual message contents have been ignored (they do not affect
the synchronisation properties of the protocol). We have only considered the case when two
stations are connected, whereas the protocol is intended to be used with an arbitrary number
of stations. Also, if too many collisions oceur, the MAC may abandon retransmissions and
report communication failure to its user. We have ignored this, and assumed that the
service specification implies error free communication. In view of these simplifications,
some service primitives in the standard (notably MA-DATA confirm and carrier sense) are
irrelevant and have been omitted. We still feel that our description contains a significant

part of the protocol. In any case, the same verification methodology would apply t5 2 more
 detailed description of the protocol.

Our experience has shown that for the purpose of protocol verification, the service spec-
ification in the .standard is incomplete. It does not specify the precise synchronisation
properties of the service, Also, the protocol is heavily overspecified. The standard describes
an MAC entity as two processes running in parallel and communicating through shared
memory. There are also several internal timers controlling different phases of the retrans-
mission procedure. These timers are of no importance if we are only interested in external
communication events, but sometimes restrictions on time outs are formulated, implying
restrictions in terms of externally observable behaviour. '

The conclusion is that it is not possible to obtain a CCS description directly from the
standard. We believe that the main reason for.the deficiencies of the standard is that there
are yet no widespread techniques for description of protocol entities in a sufficiently abstract
way. Until such techniques emerge, protocol verifications are of little practical value: it is
unclear how to prove the correctness of a formal description with respect to a standard

definition,
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