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Abstract. A verifying compiler automatically verifies the correctness of a source
program before compiling it. Founded on the definition of the source language and
a set of rules (a methodology) for using the language, the program’s correctness
criteria and correctness argument are provided in the program text by interface
specifications and invariants.

This paper describes the program-verifier component of a verifying compiler
for a core multi-threaded object-oriented language. The verifier takes as input a
program written in the source language and generates, via a translation into an
intermediate verification language, a set of verification conditions. The verification
conditions are first-order logical formulas whose validity implies the correctness
of the program. The formulas can be analyzed automatically by a satisfiability-
modulo-theory (SMT) solver.

The paper defines the source language and intermediate language, the translation
from the former into the latter, and the generation of verification conditions from
the latter. The paper also builds a methodology for writing and verifying single-
and multi-threaded code with object invariants, and encodes the methodology into
the intermediate-language program.

The paper is intended as a student’s guide to understanding automatic program
verification. It includes enough detailed information that students can build their
own basic program verifier.

0. Introduction

A verifying compiler is a compiler that establishes that a program is correct before allow-
ing it to be run. Verifying compilers can come in many flavors, from systems that gen-
erate provably correct code from specifications to systems that ask users to guide an in-
teractive theorem prover to produce a replay-able proof script. In this paper, we consider
a verifying compiler that automatically generates logical proof obligations, verification
conditions (VCs), from a given program, its embedded specifications, and a set of rules
(a methodology) that guides the use of the language. The validity of the VCs implies the
correctness of the program. The VCs are passed to a satisfiability-modulo-theory (SMT)
solver to be discharged automatically, if possible. Failed proof attempts are presented to
users as error messages, to which a user responds by fixing errors or omissions in the
program and its specifications.
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The Spec� programming system [6] is a modern research prototype of such a verify-
ing compiler. It consists of an object-oriented programming language (also called Spec �)
designed as a superset of the .NET programming language C �, enriching the type sys-
tem (for example with non-null types) and adding specifications (like pre- and postcon-
ditions) as a part of the language, a methodology for using the language, a compiler that
produces executable code for the .NET virtual machine, an integration into the Microsoft
Visual Studio integrated development environment, and a static program verifier.

Generating verification conditions for high-level source programs is nontrivial and
involves a large number of details and design decisions. Therefore, the Spec � static pro-
gram verifier (which is known as Boogie [3]) splits the task into two: it first translates
the Spec� program into an intermediate verification language (called BoogiePL [12]) and
then generates VCs from it. This lets the tool designer make modeling decisions in terms
of the intermediate language, which thus provides a level of abstraction above the actual
formulas passed to the SMT solver.

In this paper, we want to convey the design of the program-verifier component of a
verifying compiler. Doing so for Spec � and BoogiePL is too large of a task for the paper,
so we instead define a core object-oriented source language (which we shall call Spec �)
and an imperative intermediate verification language (which we shall call BoogiePL �).
As their names suggest, these languages are representative of Spec � and BoogiePL, re-
spectively. The Spec� language features classes and single-inheritance subclasses, object
references, dynamic method dispatch, co-variant arrays, multi-threading, and mutual-
exclusion locks.

Outline We start from the bottom up. In Section 1, we define BoogiePL � and its VC
generation. We define Spec� in Section 2, where Section 2.3 defines a translation from
Spec� into BoogiePL�. We then take on some hard questions of how to write specifica-
tions in such a way that one can reason about programs modularly—to scale program
verification, it must be possible to specify and verify each part (say, each class) of a
program separately, in such a way that the separate verification of each part implies the
correctness of the entire program. In Section 3, we introduce a methodology for object
invariants, which specify the data consistency conditions of class instances, and define
a translation of the new features and rules into BoogiePL �. In Section 4, we also add
features for writing multi-threaded code, a methodology for those features, and a cor-
responding translation into BoogiePL�. Throughout, we give enough details to build a
basic program verifier for Spec�. Concepts and typical design issues carry over to other
languages as well.

Foundational Work Program verification has a long history. The foundation for today’s
verification research was laid down by Floyd’s inductive assertion method [27], Hoare’s
axiomatic basis for programming [32], and Dijkstra’s characterization of semantics [19].
Early program verifiers include the systems of King [42,41], Deutsch [16], Good et
al. [30], and German [29], the Stanford Pascal Verifier [59], and the Ford Pascal-F Veri-
fier [66]. Two verifying compilers for procedural languages are SPARK [2] and B [0].
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Figure 0. An example BoogiePL� program, showing the declaration of a constant � , a function � , an axiom
that says � has a � element, a procedure ���� that finds the � element of � , and a recursive implementation
of ���� . The call statement ���� � �� ������� �� will set � to some � element of � .

1. An Intermediate Imperative Verification Language

This section defines BoogiePL�, an intermediate language for program verification.
BoogiePL� is essentially BoogiePL [12], but without some of the more advanced features
of BoogiePL. A BoogiePL� program consists of two parts:

� a mathematical part to define a logical basis for the terms used in the program,
described by constants, functions, and axioms, and

� an imperative part to define the behavior of the program, described by procedure
specifications, mutable variables, and code.

Figure 0 shows a simple BoogiePL� program. The mathematical part of this program are
the declarations of � , � , and the axiom. The imperative part of the program is given by
the specification and implementation of ���� .

The semantics of a BoogiePL� program is defined as a logical formula, consisting of
the theory induced by the mathematical part and the semantics induced by each procedure
implementation in the imperative part. The program is considered correct if the logical
formula is valid.

The next subsections introduce BoogiePL�: its type system, the syntax of its mathe-
matical and imperative parts, and the semantics of the code.

1.0. Basic Concepts

Backus Naur Form We use the common Backus Naur form to specify syntax. Nonter-
minals are written in italics. Terminals are keywords (written in bold), symbols (written
as themselves), and a set 
� of identifiers. For any nonterminal �, the suffixes � � denotes
either the empty word or �, �� denotes one or more repetitions of �, and � � denotes
either the empty word or ��. Depending on the context, repetitions are separated by
commas (e.g., in argument lists) or by white space (e.g., in a sequence of declarations);
this is not further specified.
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Program Structure At the top level, a BoogiePL� program is a set of declarations.

��
���� ��� �����

���� ��� �
������ 	 ������
� 	 ���
�
	 �������� 	 ��
������ 	 
�����������
�

Type System Value-holding entities in BoogiePL� are typed, despite the fact that a theo-
rem prover used on BoogiePL� programs may be untyped. The purpose of semantic-less
types in BoogiePL�, like the purpose of explicit declarations of variables and functions,
is to guard against certain easy-to-make mistakes in the input.

There are four built-in basic types, map types, and the supertype 
��:

���� ��� ���� 	 ��� 	 �	� 	 �
�	 	 � ����� � ���� 	 
��

The type ���� represents the boolean values �
��	 and ���	. The type ��� represents the
mathematical integers. The type �	� represents object references. One of its values is the
built-in literal ����. The only operations defined by the language on �	� are equality and
dis-equality tests. The type �
�	 represents various kinds of defined names (like types
and field names). The only operations defined by the language on �
�	 are equality and
dis-equality tests and the partial order ��. In a map type, the domain (that is, the types of
the arguments) is given first, followed by the range type.

Type 
�� represents the un-tagged union of the other types. Every type can implic-
itly be converted to and from the type 
��. Because types in BoogiePL � are semantic-
less, we use the identity for these conversions. But note that the implicit conversion from

�� to a type � is “unsafe” (since 
�� is not a tagged union with checked tags). It is
our responsibility to guarantee correct usage of expressions of type 
��.

We say a type � is assignable to a type � if � is � or if either � or � is 
��.

Scope Rules BoogiePL� supports nested lexicographic scoping, which means that (0)
all identifiers introduced by top-level declarations must be distinct, and (1) identifiers
introduced in inner scopes hide identifiers in outer scopes. During name resolution, an
identifier is first looked up in the innermost scope, then the enclosing scope, and so on.
It is an error if an identifier can’t be found in the scope of its use.

1.1. Theories

The mathematical part of the language (constants, functions, axioms) is similar to other
specification languages, including Larch [31] or the input language of the theorem prover
Simplify [13].

Constants and functions are identifiers that, throughout the interpretation of a pro-
gram, have a fixed, but possibly unknown, meaning.

�
������ ��� ����� 
� � ���� �
������
� ��� �������� 
� � ����� � �	����� � ���� ��

Both can be used in expressions and commands.
To constrain the values of constants and functions, one uses axioms:

���
� ��� 
���� ���� �

The given expression must be of type ���� and must not have any free variables. An
axiom that comes from free is that all constants of type �
�	 have distinct values.
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1.2. Variables and Procedures

The state space of a BoogiePL� program is defined by variables. A global variable is a
variable that is accessible to all procedures.

�������� ��� �
� 
� � ���� �

A procedure is a name for a parameterized operation on the state space.

��
������ ��� 
���	���	 
�  �������� �  ����!����
��

 �������� ��� �
������� �	����� �
�������

����� ��� 
� � ����

 ����!����
� ��� �	����	� ���� �
	 �����	� 
�� �
	 	����	� ���� �

The signature defines the list of in-parameters and then the list of out-parameters.
The procedure specification consists of a number of �	����	�, �����	�, and

	����	� clauses. The expressions given by the �	����	� and 	����	� clauses must be
of type ����. Every 
� mentioned in a �����	� clause must name a global variable.
The in-parameters are in scope in the �	����	� clause, and both in- and out-parameters
are in scope in the 	����	� clause.

Each �	����	� clause specifies a precondition, which must hold at each call to the
procedure (we shall see calls later). An implementation of the procedure is allowed to
assign to a global variable only if it is listed in a �����	� clause of the procedure’s
specification. Each 	����	� clause specifies a postcondition, which must hold on exit
from any implementation of the procedure. The expression in an 	����	� clause is a
two-state predicate, which means that it can refer to both the initial and final states of the
procedure (using ��� expressions for the initial state, as we shall see later). The 	����	�
condition thus specifies a relation between the initial and final states of the procedure.

Procedures can be given implementations.


�����������
� ��� ��
�	�	��
���� 
�  �������� "�
��

Here, 
� must refer to a declared procedure and  �������� must be identical to that of
the declared procedure. There are no restrictions on the number of implementations that
one procedure can have; each implementation is verified to obey the same specification.

Variables come in five flavors: global variables, in-parameters, out-parameters, local
variables, and quantifier-bound variables. We say that a variable is writable in an imple-
mentation if it is a local variable, out-parameter, or a global variable mentioned in the
modifies clause.

1.3. Motivation for Choice of Commands

BoogiePL� commands have been designed to be simple and primitive. The design makes
heavy use of three useful, but perhaps less known, commands: 
��	��, 
����	, and
�
���. Before we define these and other commands in the next subsection, we give a
couple of examples to develop an intuitive understanding of these commands.



6 K. R. M. Leino and W. Schulte / A Verifying Compiler

Let us look at how we translate Spec�’s conditional and while loop into BoogiePL�.
Spec� has the usual conditional statement, written as �� �� �  	��	 � . It goes wrong
if � is not defined; otherwise, if � evaluates to ���	, then the conditional statement
executes  , else the conditional statement executes � . The translation of the conditional
statement into BoogiePL� is defined as follows:

�� ���� �� �  	��	 � �� �

��	�� �� ��� �� �
� 
����	 �� ��� �� � �� �� ��
�� 
����	 
�� ��� �� � �� ��� ��
�

The translation uses three functions (cf. Section 2 for their full definitions). The function
�� ��� �� � � translates a Spec� statement � into the BoogiePL� command �. The func-
tions �� ����� � � � and �� ����� � � �� return two BoogiePL� expressions for one Spec�

expression: � � says whether � is defined and, if so, � �� denotes its translated value.
The translation uses an 
��	�� command to check that � is defined. If � is not

defined, that is, if �� ��� �� evaluates to �
��	, then the 
��	�� command will cause the
program to halt with an error.

The rest of the translation consists of a nondeterministic choice, as denoted by ��.
Each choice begins with an 
����	 command, which indicates under which condition
the remainder of that path of the program is analyzed. That is, the translation of  is
analyzed only if �� ��� �� evaluates to ���	, and analogously for � .

Spec�’s while loop ����	 �� � ���
��
�� # � � � proceeds as follows. The while
loop goes wrong if the loop invariant # is not defined or evaluates to �
��	, and it goes
wrong if the loop condition� is not defined. Otherwise, if � evaluates to ���	, the body
� � is executed, after which the entire while loop is executed again. If � evaluates to
�
��	, the while loop terminates. We translate the while loop into BoogiePL � as follows:

�� ������	 �� � ���
��
�� # � � ��� �

��	�� �� ��# �� � 
��	�� �� ��# �� �
�
���$� �� �� �

����	 �� ��# �� � �� ��# �� �

��	�� �� ��� �� �
� 
����	 �� ��� ��
�� ��� ��� �

��	�� �� ��# �� � 
��	�� �� ��# �� �

����	 �
��	

�� 
����	 
�� ��� ��
�

The translation uses a function $� �� ��, which returns the list of variables possibly mod-
ified by  , also known as the syntactic targets of the loop.

The translation can be understood as follows. First, the loop invariant is checked
on entry to the loop. Then, we want to look at just one iteration of the loop, but we
want it to be an arbitrary iteration. The translation thus “fast forwards” to an arbitrary
iteration by setting the variables to arbitrary values. More precisely, the translation sets
the syntactic targets of the loop to arbitrary values (�
��� $� �� ��) satisfying the loop
invariant (
����	�� ��# ����� ��# ��). In that arbitrary iteration, the translation checks that
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the loop condition is defined, and then either performs one more iteration or terminates
the loop. After executing  , the translation checks that the invariant # still holds—this is
essentially the inductive step of the loop verification.

One thing remains to be explained: The 
����	 �
��	 command at the end of the
first choice branch indicates that the remainder of the program is not analyzed imme-
diately after an arbitrary loop iteration. The analysis proceeds under the assumption of
successful termination, which happens through the second choice branch.

1.4. Commands

Now we are ready to introduce the BoogiePL� commands, which follow this grammar:

�
����� ��� 
��	�� ����

	 
����	 ����

	 �
��� 
��

	 ��������
� �� ����

	 �
�� 
�� �� 
� � ����� �
	 �
����� � �
�����
	 �
����� �� �
�����
	 "�
��

"�
�� ��� �����������
������
��������
� ��� 
�

	 ��������
� � ����� �

The command 
��	�� � evaluates � , which must be of type ����. If � evaluates
to ���	, then the command terminates. If � evaluates to �
��	, then the command goes
wrong, which indicates a non-recoverable error.

The command 
����	 � evaluates � , which must be of type ����. If � evaluates
to ���	, then the command terminates. If � evaluates to �
��	, then the execution of the
program stalls forever, which entails that this program path no longer has any chance of
going wrong.

In the command �
��� �� , each identifier in the list �� must refer to a writable
variable. The command assigns an arbitrary value to every variable in �� .

The assignment command uses a designator. In general, a designator expression has
one of two forms. If it is an identifier � , then � must refer to a variable or constant. The
type of such an expression is the type of � . A designator expression of the form ���� �
requires the type of � to be a map type. The number of expressions in the list �� must
equal the number of argument types of �, and the types of the expressions in �� must
be assignable to the types of the corresponding argument types of �. The type of the
expression ���� � is the range type of �.

The designator expression used as the left-hand side � of an assignment command
� �� � must be either a writable variable or an expression ���� � where � is a writable
map variable. The type of � must be assignable to the type of � . If the left-hand side
is a variable, the assignment command changes the value of that variable to � . If the
left-hand side is an expression ���� �, the assignment command overwrites � with a new
map that is like the old except that it maps �� to � .

In the call command �
�� % �� ���� �, � must refer to a procedure and % must
refer to distinct writable variables that are not mentioned in � ’s �����	� clauses. The
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length of the list % must equal the number of out-parameters of � , and the types of the
out-parameters of � must be assignable to the types of the corresponding variables in
% . The length of the list �� of expressions must equal the number of in-parameters of
� , and the types of the expressions in �� must be the assignable to the types of the
corresponding in-parameters of � .

The call command evaluates the expressions in �� and binds the resulting values to
the in-parameters of � . It also binds % to the out-parameters of � . The call command
goes wrong if any of � ’s declared preconditions is not satisfied. Otherwise, the call com-
mand sets % and the variables in � ’s �����	� clauses to arbitrary values satisfying � ’s
postconditions. Note that the meaning of the call command is given by the procedure’s
specification alone; the procedure’s implementations are separately checked against the
specification, thus enabling modular reasoning.

The sequential composition of two commands  and � is written  � � , and its
behaviors are defined by the behaviors of  followed by the behaviors of � . The choice
composition of two commands is written  �� � , and its behaviors are defined as the
union of the behaviors of  and � . That is,  �� � can behave as either  or � . We let �
bind stronger than ��.

The block command ���  � introduces local variables �� for use in  . The
behavior of the block command is the behavior of  started with arbitrary values for�� .

1.5. Expressions

Expressions are fairly standard and follow this grammar, where � denotes any binary
operator shown in Fig. 1:

���� ��� ���� � ����

	 
 ����

	 ��
�

��
� ��� &������

	 ��������
�

	 
� � ����� �
	 ��� � ���� �
	 '�����!����
�

&������ ��� �
��	 	 ���	 	 ���� 	 	 	 � 	 
 	 � � �
'�����!����
� ��� � '����
� 
������ � ���� �

'����
� ��� � 	 �

Unary and binary operators are given in Fig. 1. Each line shows the supported type
signatures of the operators and common names for the operations. The figure also de-
scribes BoogiePL�’s precedence rules. Each box holds operators with the same prece-
dence. Operators in higher boxes have higher precedence than operators in lower boxes.
For example, ��� 
� means ����� 
���, as usual. Implication is right associative. The
other logical operators are associative, but associate only with themselves. All other op-
erators are left associative. Although we do not show them in the grammar, we also allow
expressions to contain parentheses, which can be used to override operator precedence.

The literals �
��	 and ���	 have type ����, the literal ���� has type �	� , and the
integer literals have type ���.
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 � ����� ���� logical negation

 � ���� ���� ��� multiplication
� � ���� ���� ��� integer division
� � ���� ���� ��� integer modulo
� � ���� ���� ��� addition
� � ���� ���� ��� subtraction
� � ���� ���� ���� arithmetic less-than
� � ���� ���� ���� arithmetic at-most
� � ���� ���� ���� arithmetic at-least
� � ���� ���� ���� arithmetic greater-than
�� � �
�	� �
�	� ���� partial order on names
� � � � � � ���� equality
�� � � � � � ���� disequality
� � ����� ����� ���� logical conjunction
� � ����� ����� ���� logical disjunction
� � ����� ����� ���� logical implication
� � ����� ����� ���� logical equivalence

Figure 1. BoogiePL� operators, their types, and syntactic precedence.

In the function-application expression � ��� �, � must refer to a function. The num-
ber of expressions in the list �� must equal the number of arguments of � , and the types
of the expressions in �� must be assignable to the types of the corresponding arguments
of � . The function-application expression has the same type as the result type of � .

The expression ����� � is allowed to appear only in 	����	� clauses and proce-
dure implementations. If it appears in code, � must only refer to variables that are in
scope in the procedure’s preconditions; more precisely, global variables, in-parameters,
and quantifier-bound variables can be mentioned, but out-parameters and the implemen-
tation’s local variables cannot. The expression denotes the value of � on entry to the
procedure.

The quantifier expression ��% � � �, where � is either � or �, defines the identi-
fiers in % as bound variables that can be used in � . The type of a quantifier expression
is ����. The expression denotes the corresponding logical quantifier.

1.6. Weakest Preconditions

The semantics of the commands in our simple language is defined by weakest precondi-
tions [19,68].

The weakest precondition of a command  and predicate ' on the post-state of  ,
denoted by %��� �' ��, is a predicate on the pre-state of  that characterizes the set of all
states such that execution of  begun in any of those states does not go wrong, and if it
terminates successfully, terminates in ' .

We define the following:
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%���
��	�� � � ' �� � � � '

%���
����	 � � ' �� � � � '

%����
��� �� � ' �� � �� �� � ' �
%���� �� � � ' �� � ' ���� �
%��� � � � ' �� � %��� � %���� �' �����
%��� �� � � ' �� � %��� �' �� � %���� �' ��
%������  �� ' �� � �� (( � %��� �' �� �

where (( denotes the list of variables declared in �� , and where we understand a quan-
tification with an empty list of bound variables to be just the body of the quantifica-
tion. The semantics of map assignment is defined in Section 1.8 and the semantics of
procedure calls is defined below.

The translation function ' ���� � denotes the capture-avoiding substitution of � for
� in ' that keeps all ��� subexpressions intact. For example, if ' is

� � ����� � � �� � � 	 � ��� � � � �� � � � �� � �� � ��� � �

then ' �� � ��� � is

� � � � ����� � � �� � � 	 � ��� � � � �� ) � � �� � �� ) � � ��� � �� �

where, to avoid variable capture, the substitution operation renamed the bound variable
� to a fresh variable ) .

The definition of assert says that the legal pre-states of 
��	�� � are those in which
both � and ' hold. Here and in Spec�, programmers use 
��	�� � to claim that the
condition � holds, and a program verifier must verify that claim.

The definition of assume says that the legal pre-states of 
����	 � are those in
which either � does not hold or ' already holds. Here and in Spec �, programmers use

����	 � to express the fact that they care only about those executions where � holds,
and a program verifier is then allowed to use � as an assumption.

The definition of �
��� �� says that ' has to hold for all possible values of �� .
The assignment says that in order for ' to hold after the assignment, ' with �

replaced by � must hold before it.
Sequential composition and choice correspond to functional composition and con-

junction, respectively.
The meaning of the block command ��
� � �� � �� is defined in terms of the mean-

ing of its embedded command � by universally quantifying over all possible initial val-
ues of � . Note that the block command is equivalent to �
��� � � � , but the block
command also introduces the scope of � .

Here are some example derivations for %�, where we have simplified some of the
right-hand sides:

%���
��	�� � � � � ' �� � � � � � '

%���
��	�� ���	� ' �� � '

%���� �� � � �� � � ��� � � � 	
%���
����	 � � � � �� � � ��� � � � � � � � � � �
%���
����	 �
��	� ' �� � ����

%���
��	�� � � 
����	 � � ' �� � � � �� � '�
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Shorthand Notations If a call command has no out-parameters, we write it simply as
�
�� ���� �.

In the definition of procedure calls below, it will be convenient to use simultane-
ous assignments, which we write as �� �� �� , where �� is a list of distinct writable
variables, �� is a list of expressions of the same length, and each expression in �� is
assignable to the type of the corresponding variable in �� . The values of the variables
after executing an assignment command �� �� �� equal the values of the correspond-
ing expressions before executing it. Simultaneous assignments can be defined in terms
of block commands and assignments: a block command introduces temporary variables
for the variables in �� , then assigns, in sequence, each of the expressions in �� to the
temporary variables, and finally assigns each of the temporary variables to �� . The %�
of simultaneous assignment then becomes:

%����� �� �� � ' �� � ' ������ �

where ������ � denotes simultaneous substitution.

Procedures To define the semantics of procedure calls and implementations, we refer
to the names in the following schema:


���	���	 ����� �	����� �**��
�	����	� ���� �����	� �� � 	����	� �
�� �

The semantics of a procedure call �
�� �� �� ���� � is defined to be the semantics
of the following command:

� �
� ��� �
� **� �
� ++ �
�� �� �� �

��	�� ����
,, �� �� �
�
��� �� �

����	  ����-�� ��*������-�� ���
�� � �� � ,,�����
�� �� ��

�

(0)

where ++ is a list of fresh variable declarations corresponding to the global variables
�� , and where we use ��, �� , and ,, to denote the lists of identifiers introduced by ��,
**, and ++ , respectively. Here and in the sequel, we are sloppy with the exact syntax
of lists, as in showing just one �
� keyword in front of the list ��.

The definition of procedure call introduces local variables for the formal parameters
�� and **, and introduces a fresh variable in ++ for every global variable mentioned
in �� . The definition then evaluates the actual in-parameters and assigns these to the for-
mals. The definition then requires that the caller has established the precondition of � .
The �
��� command destroys all knowledge about modified global variables; the as-
signment ,, �� �� captures the previous values of �� . The caller can then assume that
the postcondition has been established, where in the postcondition we first handle ���
expressions: for each variable � in �� , the translation function*������-�� ���
�� � �� � ,,��
replaces every occurrence of � nested inside an ��� expression within �
�� by �’s cor-
responding variable in ,,; translation function  ����-�� ��' �� replaces every subexpres-
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�������� � ����� �	����� ����� �

���� �� � � ��� � 	 � � � 
 
 � � � ��� � �
�
� � � ��� �

���	���	 
����� ���� �	����� �� � ���� �
�	����	� 	 � � �
�����	� � �
	����	� ����� � � � � � � ����� � �

��
�	�	��
���� 
����� ���� �	����� �� � ����
� � �� � � � �� � � � ��� �

Figure 2. An example BoogiePL� program, showing the declaration of a function � , an axiom that constrains
� , a global variable � , a procedure ��� that is specified to operate on � , and an implementation of ���.

sion ����� � in ' by � (we omit the formal definitions of *������-�� and  ����-�� ).
Finally, the definition of the call assigns the formal out-parameters to the actuals.

This definition is correct only if �� and ** do not capture variables used in �� . If
they do, we have to introduce fresh variables in �� and ** and consistently rename the
uses of the formal in- and out-parameters in ��� and�
�� before unfolding the definition
above.

An implementation

��
�	�	��
��������� �	����� �**�
"
��

of procedure � is valid if it obeys the procedure’s specification, under the proviso of the
mathematical theory (that is, the conjunction of the axioms), here called $� :

(������ �"
��� �
 ��������� ��$� �  ����-�� �� %���� �
� ��� �
� **�


����	 ����
"
�� �

��	�� �
�� �

�� ���� ������

(1)

The application of %� produces a predicate on the pre-state of the procedure. In that
state, ����� � means just � , so we apply the translation function  ����-�� . The transla-
tion function  ��������� erases the types of all quantifier-bound variables (we omit the
formal definition).

Note that, compared to the call, the roles of the assert and assume commands are
reversed here. Also, note that the modifies clause �� need not be verified, since it is
already syntactically checked ("
�� is allowed to assign only to writable variables).

We say that a BoogiePL� program is correct if all its procedure implementations are
valid. Note that this verification technique is modular, since it verifies each implementa-
tion separately.

1.7. Example

Consider the BoogiePL� program in Fig. 2. The mathematical theory, $� in (1), of this
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program is its one axiom. For the implementation of 
��, the command to which %� is
applied in (1) is:

� �
� �� ��� � �
� � � ��� �

����	 	 � � �
� � �� � � � �� � � � ��� � �

��	�� ����� � � � � � � ����� �

�

The %� of this command with respect to ���� is:

���� � � 	 � � � ����� � � � � � ��� � � � ����� � � ���� �

Applying  ����-�� to this formula yields:

���� � � 	 � � � � � � � � ��� � � � � � ���� �

So, the verification condition generated for the program in Fig. 2 is:

�� � � 	 � � � 
 
 � � � ��� � �
���� � � 	 � � � � � � � � ��� � � � � � ���� �

This is a valid formula, which an SMT solver like Simplify [13] easily verifies, so the
program is correct.

By definition (0), the semantics of a call command:

�
�� ) �� 
����
�

is given by the following command:

� �
� �� ��� � �
� � � ��� � �
� 
��_� � ��� �
� �� �
 �

��	�� 	 � � �

��_� �� � �
�
��� � �

����	 
��_� � � � � � 
��_� �
) �� �

�

1.8. Targeting a Theorem Prover

The correctness of an implementation "
�� of a procedure � is verified by pass-
ing (������ �"
��� to an theorem prover, like a Satisfiability Modulo Theories (SMT)
solver. Modern SMT solvers, like Simplify [13], are particularly well suited for auto-
matic verification. First, they require no user interaction and can thus be used as a push-
button technology. Second, they are refutation based, that is, they may produce coun-
terexamples in case a property can’t be satisfied, and those counterexamples can be used
for error reporting. Third, their heuristics are tuned for software verification.

These SMT solvers are typically built around Nelson-Oppen cooperating decision
procedures [67,69]. They all provide decision procedures for congruence closure (unin-
terpreted function symbols and equality), linear arithmetic, and quantifiers. Some also
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provide partial orders, maps, and other theories. In case a targeted theorem prover does
not support a BoogiePL� defined operator, we have to add proper axioms. Simplify,
for instance, does not have a built-in decision procedure for maps. Consequently, the
verification-condition generator for Simplify has to axiomatize operators for map select
and map update.

For instance, the verification-condition generator for Simplify replaces every map
select expression��� � by the term ���������� �, and replaces every map update��� � ��
� by � �� ��
������ �� �. Simplify is untyped, so it suffices to add one axiom for
������ and ��
�� to the theorem prover’s background axioms:

���� � � 	 � ( � �� � 	 � ���������
����� � � (�� 	 � � (� �
�� �� 	 � ���������
����� � � (�� 	 � � ��������� 	 �� �

Of course, arities of function symbols have to be respected in Simplify, that is, we need
different function symbols and axioms to support maps of different arities.

2. An Object-oriented Programming Language

This section defines Spec�, an object-oriented programming language. Spec � is a core
of Spec� [6]. Like the modern object-oriented languages Java, C �, Eiffel, and Modula-3,
Spec� has object references, classes, subclasses with single inheritance, methods with
dynamic dispatch, and co-variant arrays. Spec � excludes features like interfaces, mul-
tiple inheritance, structs, delegates, generics, static members, once functions, abstract
methods, properties, events, iterators, overloading, boxing, and visibility modifiers.

Figure 3 shows an example Spec� program.
We give the semantics of Spec� in terms of a translation into the procedural language

BoogiePL�.

2.0. Programs, Classes, and Members

At the top level, a Spec� program is a set of classes.

��
� ��� ������

A class defines an object type and provides its implementation. A class has a name
(an identifier), a superclass, and a set of member declarations.

����� ��� ��
�� 
� � -�	������� �$������ �
-�	������� ��� ���	�� 	 
�

Each class derives from a single existing class, its immediate superclass. The de-
clared classes form a single-inheritance subtype hierarchy rooted at the built-in object
type ���	��. As a shorthand, we allow “� -�	�������” to be omitted; -�	������� then
defaults to ���	��. The values of object types are called objects and consist of the special
value ���� and of references to a suite of class members (fields, invariants, and methods).
Every reference has a built-in readonly field called����, which returns the run-time type
of the reference, represented as an object.

In addition to object types, we consider the Spec � types booleans, and integers, and
one-dimensional arrays.
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��
�� ���� �
��� � �

�������� ��
	����	� � �� � �

� � � � � �

�����
� ��� .����
	����	� ������ �� � �

� �	���� � � �

�����
� ����  ������ ��
�����	� �����
�
	����	� � �� � �

� � � � � �

���� 
��"����� ��
�����	� �����
�
	����	� � �� ����� � � � �

� ��� � � .�����  ���� � ��� �
�

��
�� "��������� � ���� �
��� ��

"������������� ��
	����	� � �� � �� � �� � �

� �
�	���� � � � � �

��	����	 ����  ������ ��
	����	� � �� ����� ��

� � � � � �
�	� ������ �

�����
� ��� .��"�������
	����	� ������ �� ��

� �	���� �� �

���� *
��������
�����	� � �
	����	� � �� ��

� � � �� �
�

Figure 3. Two example classes written in Spec� . Class 	
�� represents a single storage location. The subclass
�
����	
�� additionally maintains a recent history of the contents of that storage location.

���� ��� ���� 	 ��� 	 -�	������� 	 ���� � �

Arrays are references to sequences of values. Each array type is a subtype of ���	��.
We refer to object types and array types as reference types. The types respect polymorphic
subtyping, that is, if � is a subtype of  , then an expression of type � can be assigned to
a designator of type  (but not vice versa, unless � and  are the same type). Our array
types are co-variant in their element type. For example, the type �
��� � � is a subtype
of ���	��� �, provided �
��� is a subtype of ���	��. Arrays support the usual indexing
lookup and update operations; they also have a built-in readonly field called &����,.

Class members can be fields and methods.

$����� ��� ����� 	$��,
�

A field is an instance variable, that is, each instance of the class has its own copy of
the variable.

����� ��� �����$
��!��� ���� 
� �

Modifiers for fields will be introduced later.
Spec� supports usual scoping rules. For simplicity, we assume here that the fields

declared in a class are distinct from other fields declared in the class and its superclasses.
A method is a name for a parameterized operation on the state space. A method can

be invoked, passing a fixed number of values as parameters. Every method declaration
belongs to some class. Syntactically, Spec� distinguishes three kinds of methods: con-
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structors, non-virtual methods, and virtual methods. When a method includes a �����
�
or ��	����	 modifier, that method is said to be a virtual method; otherwise, the method
is said to be a non-virtual method. A constructor declaration looks like a non-virtual
method declaration, but it is named with the name of the class in which it is defined and
it has no result type.

A non-virtual method must be distinct from all methods declared in the class and
its superclasses. The implementation of a non-virtual method is the same whether the
method is invoked on an instance of the class in which it is declared or on an instance of
a derived class.

A virtual method declared with �����
� must be distinct from all other methods
declared in the class and its superclasses. In contrast to non-virtual methods, the imple-
mentation of a virtual method can be overridden in derived classes. The declaration of
the method override, indicated by the ��	����	 keyword, must have the same signature
as the overridden method; it provides a new implementation of the overridden method.

Every class has a constructor. It is only used in the creation of an object of the class.
Constructors are implicitly called by class instance creation expressions (�	�) and by
base calls inside constructors. For simplicity, we restrict classes to have just one con-
structor. If a class declares no constructor, then a default constructor with no parameters
is provided, which simply calls the superclass constructor with no parameters (which is
an error if the superclass does have a parameterless constructor). If a constructor is given,
the first statement of its body must be a call to the superclass constructor.

$��,
� ��� /
��
�������!� �


� �����
���  ����!����
�� "�
��

/
��
�������!� ��� $��,
�$
��!��� *���������

$��,
�$
��!�� ��� �����
� 	 ��	����	
*��������� ��� ���� 	 ����

����
� ��� ���� 
�

 ����!����
� ��� �	����	� ���� �
	 �����	�$
���������
�� �
	 	����	� ���� �

$
���������
� ��� -��������
� $
� �Æ�

-��������
� ��� ���� 	 ��������
�
$
� �Æ� ��� � 
� 	 � 
 	 � 
 �

In addition to the explicitly declared parameters, each method takes an implicit re-
ceiver parameter referred to by the keyword ����. If a method has no return value, its
return type is specified as ����.

The procedure specification consists of a number of �	����	�, �����	�, and
	����	� clauses, which like in BoogiePL� introduce preconditions, modifies clauses,
and postconditions. The expressions in the pre- and postconditions must be of type ����.
The parameters, including ����, are in scope in the specification, except that ���� is not
available in the precondition of constructors. Postconditions can also mention ��� and
��	�� expressions (explained below) and, for non-void, non-constructor methods, the
keyword �	����, which denotes the return value. The pre- and postconditions are not al-
lowed to contain allocation and call expressions (explained below). The modifies clause
must not list the designator expression � ����� or � �&����,, for any expression � , at
the top level.
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Each method has one implementation, consisting of a block statement. Unlike in
BoogiePL�, we cannot enforce modifies clauses in Spec� by syntactic restrictions. In-
stead, method implementations in Spec� need to be verified to satisfy their modifies
clauses. The declared modifies clauses indicate a set of heap locations, which one gets
by evaluating every modifies designator expression on entry to the method. A modifies
designator of the form � �� gives the license to modify the � field of object � , � �
 gives
the license to modify any field of object � , and � �
� gives the license to modify array �
at any index. A method implementation also gets a blanket license to modify some other
things, as we explain later.

Spec� supports behavioral subtyping [45,58,17], that is, whenever an object of static
type  is expected, any object of a subtype � of  can be used without invalidating the
program’s verification. A necessary condition for behavioral subtyping is the following:
Consider a virtual method � defined in  (written  Æ�) and an override of � defined
in a subclass � (written � Æ�); then, � Æ� can only weaken  Æ�’s precondition and
only strengthen  Æ�’s postcondition. In this paper, we consider only the strengthening
of postconditions, which override � Æ� can specify by providing additional 	����	�
clauses. These are then conjoined with the postconditions of the overridden method, as
the translation into BoogiePL� will make explicit.

2.1. Statements

Statements in Spec� follow this grammar:

 ��� ��� "�
��

	 ���� 
� �
	 ���� 
� � ���� �
	 
��	�� ���� �
	 
����	 ���� �
	 ��������
� � ���� �
	 ����

	 
� ���

	 0,��� ���

	 �	���� ���� �
"�
�� ��� �  ���� �

� ��� ��� �� � ���� �  ��� ���� ����

���� ��� ��� 	��	  ���

0,��� ��� ��� ����	 � ���� � 
�(������� "�
��

�(������ ��� ���
��
�� ���� �

If a statement attempts to evaluate an undefined expression (like ��� when � evalu-
ates to 	), the statement goes wrong, which is an unrecoverable error.

The block statement consists of a sequence of statements, which are executed in
order. The declaration statement � � � introduces a local variable � whose scope goes
from the declaration until the end of the enclosing block. As usual, � must be distinct
from any other variable introduced among the statements, but, unlike in BoogiePL �, a
variable in Spec� must not hide another local variable � in an outer scope. If a local
variable hides a field in scope, then the field has to be accessed via ���� explicitly.

The statement � � � � � is simply a shorthand for � � � � � � �.
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Syntax and semantics of 
��	�� and 
����	 are the same as for BoogiePL �, ex-
cept that the Spec� statements also check that their expressions are defined. Embedded
expressions must not contain call or allocation expressions. In Spec �, the assume state-
ment introduces an assumption that is used, but not validated, by the program verifier;
the assumption can instead be validated at run time.

In the assignment statement � � � �, the type of � must be a subtype of the type of
� . If � is of the form- �� , then � must not be the built-in readonly fields ���� or &����,.
The statement goes wrong if � or � is not defined; otherwise, it assigns the value of �
to � . More specifically, if � is of the form - �� , the statement updates the heap so that
field � of object - becomes � ; if � is of the form ��� �, the statement updates the heap
so that element � of array � becomes � .

The call statement is explained in Section 2.2. Only constructors (called via "���)
and methods with a void return type can be used as ���� statements.

In the conditional statement �� �� �  	��	 � , expression � must be of type ����.
The statement goes wrong if � is not defined. Otherwise, if � evaluates to ���	, the
statement executes  , and if � evaluates to �
��	, the statement executes � . If “	��	  ”
is omitted,  defaults to � �. Parsing of conditional statements is ambiguous; we resolve
any ambiguity of parsing 	��	 statements by associating them to the rightmost (inner-
most) �� .

In the while loop ����	 �� � ���
��
�� # � "
�� , the condition � and loop invari-
ant # must be of type ����. Furthermore, # must not contain call or allocation expres-
sions. As we explained in Section 1.3, the statement goes wrong if # is not defined, if
# does not evaluate to ���	, or if � is not defined. Otherwise, if � evaluates to ���	,
then "
�� is executed, after which the entire while loop is executed again (including the
evaluation of the loop invariant). If � evaluates to �
��	, the execution of the while loop
terminates.

In the return statement �	���� � �, the type of � must be a subtype of the method’s
return type. The return statement is allowed only as the last statement of a method imple-
mentation. The statement goes wrong if � is not defined; otherwise, it returns the value
of � to the method’s caller.

2.2. Expressions

Spec� expressions follow the grammar in Fig. 4.
Spec� shares most of its operators with BoogiePL�. Except as noted here, the shared

operators have the same typing, precedence, and meaning. In Spec �, division and modulo
are defined only for non-zero divisors. For the relational operators �� and ��, the types
of the operands must be compatible; that is, the type of one operand must be a subtype
of the type of the other.

Instead of the logical operators�, �, and � in BoogiePL �, Spec� defines the corre-
sponding short-circuit versions of these operators, written ���, ��, and 		, respectively.
Short-circuiting means that if the left-hand operand is defined and evaluates to a value
that determines the result of the operator (�
��	, �
��	, and ���	, respectively), then the
expressions are defined regardless of whether or not the right-hand operand is defined.

Spec� also adds the binary �� operator, whose precedence lies between those of ��
and ��. The precedence of cast expressions, where the prefix “�� �” is like a unary
operator, is just higher than �. Although we do not show them in the grammar, we
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 ����

	 ��
�

� ��� 
 	 � 	� 	 � 	 � 	 � 	 � 	 � 	 � 	 �� 	 ��
	 �� 	 		 	 ���
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� ��� ���� 	 �	����
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	 '�����!����
�
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��	 	 ���	 	 ���� 	 	 	 � 	 
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	 �
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	 �
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Figure 4. The grammar of Spec� expressions.

also allow expressions to contain parentheses, which can be used to override operator
precedence.

The type of the expression ���� is the enclosing class. The keyword �	���� is al-
lowed to appear only in 	����	� clauses of non-void, non-constructor methods; its type
is the method’s return type, and its value is the method’s return value. The type of ����
is any reference type. The type of boolean literals is ����, the type of integer literals is
���.

Three forms of designators are distinguished. In the first form, if 
� does not men-
tion a variable, then it is a synonym for �����
� . The type of the expression 
� is the
type of the variable 
� . In the second form, � �� , � must be of a reference type, call it
� , and � must be ����, &����, (if � is of an array type), or a field declared in class �
or a superclass thereof. The expression is defined only if � evaluates to a non-null value.
The type of � ����� is ���	��, the type of � �&����, is ���, and otherwise the type of
� �� is the type of � . In the third form, � �� �, � must be of an array type and � of type
integer. The expression is defined only if � evaluates to a non-null value, � evaluates
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to a non-negative integer that is less than � �&����,. The type of the expression is the
element type of � .

Spec� supports four forms of call expressions. All legal call expressions resolve to
some method. The types of the expressions in list �� must be subtypes of the types of
the respective formal parameters of the callee. If the callee is a constructor or has a void
return type, then the call is allowed only as a statement; otherwise, the type of the call
expression is the return type of the callee.

The first form of the call expression, ���� �, is a shorthand for ��������� �.
In the second form, � ����� �, � must be of an object type, call it � , and � must

name a non-constructor method in � or a superclass thereof. The call expression is de-
fined only if � evaluates to a non-null value. The expression binds the formal receiver
parameter ���� of� to the value of� and binds the formal parameters of� to the values
of �� . Then, if any precondition of � evaluates to �
��	, the call statement goes wrong.
The evaluation of the call expression proceeds by transferring control to the method’s
implementation, upon return of which the result value becomes the value of the call ex-
pression. If � is a virtual method, then the implementation invoked is the one found in
the most derived supertype of the run-time type of � .

The third form, �
�	����� � where � must denote a virtual method, is allowed
only in overrides of�. It is treated like the call ��������� �, except that control transfers
to the implementation found in the most derived supertype of the immediate superclass
of the enclosing class.

The fourth form, �
�	��� �, is allowed only as the first statement in constructors.
It calls the constructor of the immediate superclass.

Two forms of allocation expressions are supported. The expression �	� � ��� �,
where � must name a class, has type � . It allocates a new object � of run-time type �
with all of �’s fields set to zero-equivalent values. Next, it calls � �� constructor with � as
the receiver and �� as its actual parameters. All constraints of method calls have to be
obeyed. Upon return of the constructor, � is the result of the expression. The expression
�	� � �� �, where� must be a type and � must be of type ���, has type� � �. It allocates
and returns a new array � of run-time type � � � and of length � . All array elements of �
have zero-equivalent values. The statement goes wrong if either � is not defined or if �
evaluates to a negative integer.

For the type test expression � �� � and cast expression �� �� , � must be a refer-
ence type and the type of � must be compatible with � . The type of � �� � is ����,
the type of �� �� is � . The type test expression evaluates to ���	 if � evaluates to a
non-null reference whose run-time type is a subtype of � . The cast expression is defined
only if � evaluates to ���� or if � �� � would evaluate to ���	, and it returns the value
of � .

The expressions ����� � and ��	���� � are allowed to appear only in 	����	�

clauses. (Note, unlike BoogiePL�, Spec� does not allow ��� expressions in code.) The
type of ����� � is the type of � and the type of ��	���� � is ����. The former returns
the value of � evaluated on entry to the method; the latter returns ���	 if � denotes an
object that was not yet allocated on method entry.

In a quantifying expression ���
������ � �� �$ � / �� ��, $ and / must have
type ��� and the expression � must have type ����. The newly introduced � is in scope
in � , but not in $ or / . Expressions $ , / , and � must not include call or alloca-
tion expressions. The quantifying expression has type ����. It is defined and returns
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���	, respectively, if � is defined and evaluates to ���	, respectively, for every value
of � satisfying / � � � $ . Existential quantification is defined in terms of universal
quantification in the usual way.

2.3. Translating Spec� into BoogiePL�

We give the semantics of Spec� in terms of a translation into BoogiePL�.

2.3.0. Prelude

The translation into BoogiePL� begins with the prelude described in this subsection. The
prelude is specific to Spec�, but independent of the particular program being translated.

Axiomatizing the Type System We map the Spec� types���� and ��� to the correspond-
ing BoogiePL� types (we ignore the fact that Spec�’s integers have a fixed size). We map
all reference types in Spec� to the BoogiePL� type �	� .

We introduce a name for each Spec� type. The names of the built-in types are:

����� _�

� ��
�	 �
����� _��� ��
�	 �
����� 
�	��� ��
�	 �

Since the names are declared as constants of type �
�	, BoogiePL � provides the im-
plicit axiom that the type names are distinct.

Spec�’s subtyping relation is captured by BoogiePL�’s partial-order operator �� and
is specified via axioms. To tie �� to type names, we introduce a function ���������� :

�������� ������������
�	� �	����� ��
�	� �

���� ��� ��
�	 � � �� ������������ � � �

The function ����� maps a type name � to the name of an array type. Given the
name of such an array type, function �������� gives back � .

�������� �������
�	� �	����� ��
�	� �
�������� ����������
�	� �	����� ��
�	� �

���� ��� ��
�	 � ���������������� �� � � � �

Array types are distinct and co-variant:


���� ��� ��
�	 � ������� � �� 
�	��� � �

���� ��� ��
�	� � ��
�	 � ������� � �� � �
� � 
�	��� � �� � ���������������� �� � � �� ���������� �� � �

Fields are also declared to be of type �
�	. We introduce a function that maps
names of fields to the names of their declared types:

�������� !���������
�	� �	����� ��
�	� �

Function ���� returns the name of the run-time type of a non-null reference.

�������� ������	� � �	����� ��
�	� �

If 
 has static type � for a reference type � , then the static type system guarantees that
�����
� �� � holds.
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Storage Model We model the heap as a map from references and field names to values.

�
��� ��	� ��
�	�
�� �

Our heap variable includes all references, allocated or not. We introduce a field ���
�
to track whether or not a reference has been allocated. We refer to such a field as a ghost
field, meaning that it is not explicitly represented in the Spec � program.

����� ���
���
�	 �

��
� ���
�� says that 
 is allocated in �.
Not all mathematical maps are heaps reachable in a Spec� program. We introduce a

function %����
�����,� to describe that , is a reachable heap.

�������� %����
�������	� ��
�	�
��� �	����� ������ �

In a well-formed heap, reference-valued fields map allocated references to allocated ref-
erences of the appropriate type.


���� �� ,� ��	� ��
�	�
�� � %����
�����,� �
�� � � �	� � � ��
�	 � � �� ���� � ,�� � ���
�� � !��������� � �� 
�	��� �
,�� � � � � ���� � �,�,�� � � �� ���
�� � �����,�� � � �� �� !��������� �� �� �

We introduce a function that relates the heap at two successive program points. It
says that the new heap is well-formed and that every reference allocated in the old heap
is also allocated in the new heap.

�������� �������
����	� ��
�	�
��� ��	� ��
�	�
��� �	����� ������ �

���� �� _
�� � ��	� ��
�	�
��� _��% � ��	� ��
�	�
�� �
�������
��_
�� � _��%� �
%����
�����_��%� �
�� � � �	� � _
�� �� � ���
�� � _��% �� � ���
�� ��

The elements of an array are stored as one “big” value in a ghost field called ����� :

����� ����� ��
�	 �

For example, the Spec� array dereference expression ��	 � is translated into BoogiePL � as
 ���������� ����� �� 	 �. The length of an array is modeled as a function:

�������� �����,��	� � �	����� ����� �

Array elements are assigned and updated using the following functions.

��������  ������
��� ���� �	����� �
��� �
��������  �
���
��� ���� 
��� �	����� �
��� �

These functions are related as follows:


���� �� �� 
��� � � ���� 	 � ���� ( � 
�� �
�� � 	 �  ������ �
����� � � (�� 	 � � (� �
�� �� 	 �  ������ �
����� � � (�� 	 � �  �������� 	 �� � �
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In a well-formed heap, reference values stored in ����� fields are allocated and of the
appropriate type:


���� �� ,� ��	� ��
�	�
�� � %����
�����,� �
�� � � �	� � � � ��� �
� �� ���� � ,�� � ���
�� � ����������������� �� 
�	��� �
	 � � � � � �����,��� �
 ������,�� � ����� �� �� � ���� �
�,� ������,�� � ����� �� ��� ���
�� �
����� ������,�� � ����� �� ��� �� ������������������ �� �

Object constructor Class ���	�� is built into the language, so we predefine the speci-
fication of its constructor:


���	���	 
�	��� Æ
�	�����,�� � �	� � �	����� � � �

2.3.1. Classes and Fields

In the sequel, we think of the translation as producing a stream of BoogiePL � program
text. The translation is described formally using the function �� , which takes a Spec �

fragment and produces a BoogiePL� fragment.
For the translation of a program, which consists of a list classes, we have:

�� ��������� �� �
for each � � ������� do
�� �����

The prescription of the translation requires control structures, which we introduce as
meta-syntax, such as the “for each � � � do � � �” construct here. Note that meta-syntax is
written in a Roman font.

We translate a class declaration as follows:

�� ����
�� � �  � ������� ��� �
����� � ��
�	 �

���� ������������ � �  �
for each � � ������� do
�� �����

For brevity, we use a star to map a translation function over a list of fragments. In this
notation, we write the last two lines as just:

������������ ��

As usual, we are sloppy with the connectives between the translated fragments; the im-
plicit connectives are conjunction, some punctuation, or white space.

In the rest of this subsection, we use � to denote the name of the current class.
Field declarations are translated as follows:

�� ��� � � �� �
����� � Æ� ��
�	 �

���� !��������� Æ� � � ������� �� �
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We use “Æ” as just another character that can appear as part of identifier names in
BoogiePL�, but that cannot be used in Spec�. Translation function ���� gives the
BoogiePL� term for Spec� types:

������������ � _�

�
����������� � _���
������� �� � � for any object type �
������� � ��� � ������������� ���

2.3.2. Methods

The translation of method declarations is more involved. Recall that BoogiePL � only
has procedures, no instance methods, so we add ���� as an explicit parameter to the
generated procedure. Furthermore, since BoogiePL � types are semantic-less, we instead
preserve Spec� types via specifications. Also, BoogiePL� has no built-in notion of heap
properties, so we preserve properties like allocatedness of references via specifications.
BoogiePL� has no notion of inheritance, so we translate overriding and strengthening of
postconditions using multiple procedures. Finally, BoogiePL � syntactically distinguishes
calls with possible side effect from side-effect free expressions; thus, we flatten Spec �

method bodies as part of the translation into BoogiePL � expressions and commands.

New Methods The declaration of a new non-virtual or virtual method in a class � is
translated into BoogiePL� as follows:

�� �������
�� � � ������  ��� "
�� �� �

���	���	 � Æ� ������� �,�� ����� ��� �	����� ��� ��� _������ ��� �
����� �����
��$
� �� �����

��
�	�	��
���� � Æ� ������� �,�� ����� ��� �	����� ��� ��� _������ ���
� 
����	 %����
������� �

����	 �,�� �� ���� �

����	 �����
������������ �,�� ����� �� �
�� ��"
�� ��

�

where formal parameters are translated as follows:

�� ������ � �� � � �����
�� ����� � �� � � � ���
�� ��� � �� � � � �	� for any reference type �
�� ������ � �� �

The last case is intentionally left blank; it is used only for method return types, and a
method with a void return type gives rise to no out-parameter is the translation.

The types of the formal parameters we just described are there only to please
BoogiePL�. The run-time types guaranteed by the static type system of Spec � give rise
to assumptions:
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�����
�������� ������ � �� �
�����
�������� ����� � �� �
�����
�������� ��� � �� � for any reference type �

� � ���� � ���� � ���
�� � ������ � �� ������� ���

For convenience later, we also define:

�����
�������� ����� �

Overriding Methods If a method overrides a virtual method, then any new postcondi-
tions are added to those previously declared.

�� ����	����	 � � ������  ��� "
�� �� �

���	���	 � Æ� ��� ��� �,�� ����� ��� �	����� ��� ��� _������ ��� �

for the “�����
� � � ������  ��� � "
�� �” in a superclass of � do
����� ������
��$
� �� ������

for each “��	����	 � � ������  ��� � "
�� �” in � or a superclass thereof do
����� ������

��
�	�	��
���� � Æ� ������� �,�� ����� ��� �	����� ��� ��� _������ ���
� 
����	 %����
������� �

����	 �,�� �� ���� �

����	 �����
������������ �,�� ����� �� �
�� ��"
�� ��

�

Constructors For constructors, we automatically grant the license to modify all fields of
the object being constructed. The implementation initializes the fields before translating
the given constructor body.

�� ��� ������  ��� "
�� �� �

���	���	 � Æ� ������� �,�� ����� ��� �	����� � � �
����� �����
��$
� �������	� �����
�  �����

��
�	�	��
���� � Æ� ������� �,�� ����� ��� �	����� � �
� 
����	 %����
������� �

����	 �,�� �� ���� �

����	 �����
������������ �,�� ����� �� �
for each field “� � �” defined in � do

����	���,�� � � Æ� � � 1��
��� �� �

�� ��"
�� ��
�

where

1��
�������� � �
��	

1��
������� � 	
1��
��*�� � ���� for any reference type *
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Method Specifications Translating pre- and postconditions is straightforward:

�� ���	����	� � � �� � �	����	� �� ��� �� � �� ��� �� �
�� �������	�0 � �� �
�� ��	����	� � � �� � 	����	� �� ��� �� � �� ��� �� �

Here, we have opted for the simple design of putting the burden of establishing the de-
finedness of the precondition on callers and the burden of establishing the definedness of
the postcondition on the implementation.

To translate the modifies clauses of a method, we first collect all of them and then
add the contribution of the modifies list to the method’s postcondition. This is described
by the following function:

��$
� �� ����� �
�����	�� �
	����	� �� 
� �	� � � ��
�	 �

 �� ���� � �������
� ���
�� �
$
����
%�� �� ���� 
� � �� �
��
� � � � �������
� � � �

where $
����
%�� generates a disjunction of the translated modifies-clause terms:

$
����
%�� �� ���� 
� � �� �
for each “�����	�0 �” in  ��� do

for each “����� ��Æ�” in 0 do
case ��Æ� of

���� � �
 � ������ ������� ��� � � � �� �
��
� � �
 � ������ ������� ���� �
��
�� � �
 � ������ ������� ��� � � � ������ �

2.3.3. Statements

The translation of statements needs a preprocessing step, which we call normalizing.

Normalization A Spec� body is in normal form, if (i) it is context extended, i.e., all its
names are properly resolved; (ii) local variable declarations appear only at the beginning
of a block; and (iii) allocations and non-void returning calls appear only as right-hand
sides of the designator form 
� .

We establish (i) as follows: We add ���� as the target expression to each designator

� that references a field or method in scope. We prefix each application of an 
� that
denotes a method or field in scope (except the built-in fields ���� and &����,), with
the most derived class of its definition. For example, if a class � declares a method $ ,
a subclass " overrides $ , and � is a subclass of " that does not declare a further
override, then ��$ ��� � where � has static type � is normalized into ��" Æ$ ��� �. We
normalize each call of the form �
�	�$ ��� � into a call ����� Æ$ ��� �, where  is the
most derived class of $ ’s definition among superclasses of the enclosing class. Finally,
each call of the form �
�	��� � is normalized into a call ����� Æ ��� � where  is the
immediate superclass of the enclosing class.

We establish (ii) by moving each local variable declaration to the beginning of its
immediately enclosing block. Spec�’s context conditions guarantee that this preserves
the meaning of the program.
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We establish (iii) by repeatedly applying the following normalizing transformations:

� Let  be an assignment, call, or return statement that contains an allocation or
call subexpression. Then, select the leftmost innermost subexpression � in  that
is a non-
� designator, a call expression, an allocation expression, or a quantifier,
and is not the entire left-hand side of an assignment or the entire call statement;
we write  ��� to single out that occurrence of �. If such an � exists, then  ��� is
normalized into

�� � � � � ��  �� ��

where � is a fresh identifier and � is the type of �.
� If the guard expression � of a conditional statement �� �� �  	��	 � contains an

allocation or call expression, then the conditional statement is normalized into

����� � � � � � � �� �� �  	��	 ��

� If the guard expression� of a while loop����	 �� � ���
��
�� # � � � contains
an allocation or call expression, then the while loop is normalized into

����� � � � � � � ����	 �� � ���
��
�� # � �� � � � � � ��

This preserves the meaning of the program, since it reflects Spec �’s leftmost-innermost
evaluation order.

Translation We now define the translation of normalized statements.
The translation of blocks is straightforward: translate each variable declaration fol-

lowed by the translation of the individual statements.

�� �������
�� �������� �
� ���������
�� �� ���������� �� �

The translations of assert, assume, and return statements check that everything is
defined before the corresponding BoogiePL � command is generated:

�� ��
��	�� � � �� � 
��	�� �� ��� �� � 
��	�� �� ��� ��
�� ��
����	 � � �� � 
��	�� �� ��� �� � 
����	 �� ��� ��
�� ���	���� � � �� � 
��	�� �� ��� �� � _������ �� �� ��� ��

The bulk of the remaining translation is translating assignments. Field update is
translated as follows:

�� ��� �� � � � �� �

��	�� �� ��� �� � 
��	�� �� ��� �� �� ���� �

��	�� �� ��� �� �
���� ��� ��� � � �� �� ��� ���

Array update needs to check that the array is non-null, that the index is within the bounds
of the array, and that run-time type of . is a subtype of the element type of the run-time
type of the array (that is, we check for co-variance).
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�� ��� �� � � . � �� �

��	�� �� ��� �� � 
��	�� �� ��� �� �� ���� �

��	�� �� ��� �� � 
��	�� 	 � �� ��� �� � �� ��� �� � �����,��� ��� ��� �

��	�� �� ��. �� � 
��	�� ������� ��. ��� �� ���������������� ��� ���� �
���� ��� ��� ����� � ��  �
������� ��� ��� ����� ���� ��� ����� ��. ���

Since the statements we translate are normalized, there are only four cases of local-
variable assignments to consider. When the right-hand side is an allocation of an object,
then the assignment is translated as follows, where 
 and 
��+��� denote fresh variables:

�� ��� � �	� � ��� �� �� �
� �
� 
� �	� � �
� 
��+���� ��	� ��
�	�
�� �

����	 
 �� ���� � �����
� � � �

����	 
��
� ���
�� �
��
� ���
�� �� ���	 �

��	�� �� ����� �� �

��+��� �� � �
�
�� � Æ� �
�������� ��� �

����	 �������
��
��+������ �
� �� 


�

This translation picks an arbitrary 
 with the properties that it is non-null, has the appro-
priate run-time type, and is not yet allocated. The translation then allocates the object 

by setting its ���
� field to ���	. Finally, it calls the � constructor, adds the assumption
that the post-call heap is a well-formed successor of the pre-call heap, and assigns 
 to
the local variable in the assignment statement.

Array allocation is similar:

�� ��� � �	� � �� �� �� �
� �
� 
� �	� �

����	 
 �� ���� � �����
� � ������� � � �� �

����	 
��
� ���
�� �

��	�� �� ��� �� � 
��	�� 	 � �� ��� �� �

����	 �����,�
� � �� ��� �� �

����	 �� � � ��� �

	 � � � � � �� ��� �� �  ��������
� ����� �� �� � 1��
��� �� � �
��
� ���
�� �� ���	 �
� �� 


�

Here, there are two additional assumptions about the reference 
: that 
 has the specified
length � , which we check to be non-negative, and that the elements of 
 all have zero-
equivalent values.

When the right-hand side is a call to a method � Æ� with return type *, then the
assignment is translated as follows:
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��	�� �� ��� �� � 
��	�� �� ��� �� �� ���� �

��	�� �� ����� �� �

��+��� �� � �
�
�� � �� � Æ�������� ��� ��� �

����	 �������
��
��+������ �

����	 �����
�������� ��* � ��

�

The last assumption states properties that are guaranteed by the Spec � type system.
For all other assignments to local variables, the translation is:

�� ��� � � � �� �

��	�� �� ��� �� �
� �� �� ��� ��

Call statements are like the calls in local-variable assignments, but they use void
methods and have no result value:

�� ��� �� Æ���� �� �� �
� �
� 
��+���� ��	� ��
�	�
�� �

��	�� �� ��� �� � 
��	�� �� ��� �� �� ���� �

��	�� �� ����� �� �

��+��� �� � �
�
�� � Æ�������� ��� ��� �

����	 �������
��
��+������

�

The translation of the conditional statement is the one we showed in Section 1.3.
The translation of the while loop in Fig. 5 is almost like we showed in Section 1.3,

but we also assume well-formedness properties of the syntactic targets of the loop,
and we check and assume some “modifies clauses” on the loop. In particular, we con-
join the postcondition contribution of the enclosing method’s modifies clause to the
loop invariant. The strengthened loop invariant makes it possible to prove the method’s
modifies clause at the end of the implementation body. In the definition in Fig. 5, we
use  ��� to denote the declared specification of the enclosing method, prepended with
“�����	� �����
�” if the enclosing method is a constructor. Note that the expansion of
&

�$
� produces a predicate that refers to the heap in three different states: � refers
to the current value of the heap, which in this context means the value of the heap on
loop-iteration boundaries; 
��+��� refers to the value of the heap upon entry to the loop,
before any of its iterations; and ������, which occurs in the antecedent and may arise in
the expansion of$
����
%�� , refers to the heap on entry to the enclosing method, which
is where the method’s modifies clause gets its meaning. Note also that, since &

�$
�

becomes part of the loop invariant, we should in principle check it on entry to the loop,
but since by construction it is idempotent, we can omit the check.

Finally, we define $� to return a list of syntactic targets, each of whose form
is either “�” or a type-id pair “� �”. From such a list &, the translation function
 ��������� ��&�� that we used above returns & with the type of each type-id pair removed
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Figure 5. The translation of while loops.

(we omit the formal definition). In the following, � denotes an expression other than an

allocation or call expression, and � denotes an identifier of a type 2 .

$� �������
�� �������� � $��������� �� � ����
��
$� ��
��	�� � � �� �
$� ��
����	 � � �� �
$� ��� � � � �� � 2 �

$� ��� � � ����� �� �� � 2 � � �
$� ��� � �	� � ��� �� �� � 2 � � �
$� ��� � �	� � �� �� �� � 2 � � �
$� ��� �� � � � �� � �
$� ��� �� � � . � �� � �
$� ���� �� �  	��	 � �� � $� �� ���$� ��� ��
$� ������	 �� � ���
��
�� # � � ��� � $� ��� ���
$� ���	���� � � �� �

2.3.4. Expressions

The well-definedness of an expression � is defined by translation function �� ��� ��.
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�� ��� ��� � �� � �� ��� �� � ��� ��� �� � �� ��� ���
�� ��� 		 � �� � �� ��� �� � ��� ��� �� � �� ��� ���
�� ��� �� � �� � �� ��� �� � ��� ��� �� � �� ��� ���
�� ��� � � �� � �� ��� �� � �� ��� �� with � being �, �, or 

�� ��� � � �� � �� ��� �� � �� ��� �� � �� ��� �� �� 	 with � being � or �
�� ��
� �� � �� ��� ��
�� �������� �
�� ���	������ �
�� ����� � with � being any literal
�� ��� �� �
�� ��� �� �� � �� ��� �� � �� ��� �� �� ����

�� ��� �� ��� � �� ��� �� � �� ��� �� �� ���� �
�� ��� �� � 	 � �� ��� �� � �� ��� �� � �����,��� ��� ���

�� ��� �� � �� � �� ��� ��
�� ���� �� �� � �� ��� �� � ��� ��� �� � ���� � ������� ��� ��� �� ������� ���
�� ������� ��� � ������ ��� ���
�� ����	���� ��� � �� ��� ��

A Spec� expression � is translated into a corresponding BoogiePL � expression by
�� ��� ��. In the following, we use � to denote the BoogiePL � operator corresponding to
the Spec� operator�; except for short-circuit operators (and type setting differences),�
and � are the same.

�� ��� � � �� � �� ��� ��� �� ��� ��
�� ��
� �� � 
�� ��� ��
�� �������� � �,��

�� ���	������ � _������
�� ����� � �
�� ��� �� � �

�� ��� �� �� � ���� ��� ��� � � with � not ���� or &����,
�� ��� ������� � ������� ��� ���
�� ��� �&����,�� � �����,��� ��� ���
�� ��� �� ��� �  ��������� ��� ��� ����� ���� ��� ���
�� ��� �� � �� � �� ��� �� �� ���� � ������� ��� ��� �� ������� ��
�� ���� �� �� � �� ��� ��
�� ������� ��� � ������ ��� ���
�� ����	���� ��� � 
��������� ��� ��� ���
��

Note that we have special cases for the built-in fields ���� and &����,, which return the
run-time type of an object and the length of an array, respectively.

2.4. Example

The Spec� program in Fig. 6 is translated into the BoogiePL� program in Fig. 7.

2.5. Summary

To verify object-oriented programs, one needs to define their semantics. One way to do
that, which we have followed here, is to translate them into a simpler language with a
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Figure 6. An example Spec� program, declaring a class with an integer field, a constructor, and a method.

precisely defined semantics. The simpler language need not be just logical formulas; in
fact, there is evidence that including imperative features, closer to the object-oriented
language than to logical formulas, makes the encoding of the semantics easier to un-
derstand and to implement [56,3]. In the encoding of Spec � that we have presented in
this section, we have decided on a storage model, axiomatized types and declarations,
and prescribed the translation of statements and expressions. In this translation, we have
addressed issues like behavioral subtyping and partiality of operations.

3. Invariants and Ownership

To prove the correctness of a method, it is usually necessary to know that its parameters,
including the receiver parameter, reference well-formed data, that is, data that satisfy
certain consistency conditions. Many consistency conditions can be described by object
invariants.

This section introduces object invariant patterns and their proof obligations. Syntac-
tically, an object invariant is declared as a class member:

$����� ��� � � �
	 
�(������

The declaration gives an invariant for the enclosing class, written in terms of an arbi-
trary object denoted by the keyword ����. We start in Section 3.0 with an example that
highlights the central question of where invariants hold. In Section 3.1, we look at intra-
object invariants, which express semantic constraints on the fields of each object. In Sec-
tion 3.2, we look at an important form of inter-object invariants, which express proper-
ties of linked objects, that is, of objects that refer to each other. Aliasing, the interaction
between object references, complicates the handling of inter-object invariants. We em-
ploy an ownership regime to control the impact of changes among objects. In Section 3.3,
we discuss inheritance and dynamic dispatch.

3.0. Where Do Invariants Hold?

The quintessential idea of object invariants is that an object satisfies its invariant when-
ever no constructor or method of the object is active (cf. [62]). With some restrictions,
this idea can be realized by checking that the constructor establishes the object invariant
and that every non-constructor method of the class preserves the invariant.
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Figure 7. The BoogiePL� translation of the Spec� program in Fig. 6. This figure omits the prelude of the
translation, which is described in Section 2.3.0 the same for all translated Spec� programs.

Class  ��	��� in Fig. 8 illustrates the idea. Its invariant constrains �� to be non-
zero. The constructor sets �� to 1, establishing the invariant, and the other methods leave
�� with a non-zero value, maintaining the invariant. Given that ���� satisfies its object
invariant on entry to method .�� , one can prove that the division in the body of .�� is
defined.
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Figure 8. An example program showing the interaction between two objects, a subject and an observer. With-
out the invariant declaration, the formalization of Spec� in Section 2 will report one error in this program,
namely a division-by-zero error in method �
� . The ��������� in ����
�� declares an intention to keep ��
non-zero, but exactly when is the invariant supposed to hold?

The interaction between class  ��	��� and class -����(�� illustrates a problem with
the basic realization of the quintessential idea of object invariants. Before it calls /
����
on the observer, method������ changes �� to 0, temporarily violating the invariant. But
/
���� then causes control to reenter the subject, which leads to a division-by-zero error.
Evidently, there is more to verifying and using object invariants than checking them at
the end of methods.

3.1. Intra-object Invariants

We introduce a programming discipline, a specification and verification methodology,
that makes it possible describe and enforce the program’s intended design regarding
reentrancy and, more generally, regarding object invariants. The methodology explicitly
keeps track of when an invariant is known to hold [4].

For every object and array, we introduce a ghost field ��( , which can take on the
values (���� and �������. The intended meaning of these two states is that the object
invariant holds of objects in the valid state, but may or may not hold of objects in the
mutable state. Newly allocated objects are mutable; that is, on entry to a constructor, the
object to be constructed is mutable.

For any class� and object 
 of class� , we let 
�(� ��
�� denote the invariant declared
in class � applied to object 
. For an array type � , 
�(� ��
�� is just ���	.

In order to be able to do modular verification with object invariants, it is necessary
to restrict what an object invariant can depend on. For intra-object invariants, we say an



K. R. M. Leino and W. Schulte / A Verifying Compiler 35

invariant (declaration) is admissible if it only refers to fields of the object, that is, if each
of its field-select subexpressions are of the form ������ for some field � (where, as usual,
“�����” can be implicit).

We can now formalize the connection between the ��( field and admissible invari-
ants:

Program Invariant 0 If the invariant a class � is admissible, then

�� 
 � 
���( � (���� � 
�(� ��
�� �

where the quantification ranges over non-null, allocated objects of type � , is a program
invariant, that is, it holds in every reachable program state.

To ensure this program invariant, the methodology restricts updates of ��( (which occurs
in the antecedent of the quantified formula) and updates of other fields of the object
(which may occur in the consequent).

Updates of ��( are restricted to two new operations, written��

�� 
� and

�� 
�
for any object-valued expression 
. The idea is that these operations delineate where an
object is mutable: ��

�� 
� makes 
 mutable, and 

�� 
� makes 
 valid after first
checking that 
�(� ��
�� holds.

Other field updates are restricted to mutable objects only. That is, we introduce

���( � ������� as a new precondition of each field update statement 
�� � � �.

Applying this methodology to the subject-observer example, we change the code in
Fig. 8 as shown in Fig. 9.

Defaults and Shorthands This methodology for object invariants uses unpack and pack
operations to change ��( , and uses pre- and postconditions to specify the value of ��(
on method boundaries. As is exemplified in Fig. 9, these operations and specifications
tend to be used in a highly stylized fashion: the constructor ends with a pack operation,
state changes in other methods are bracketed by a unpack and pack, the constructor post-
condition says that the object is valid, and the precondition of non-constructor methods
requires the object to be valid. To simplify the program text, we introduce some defaults.

First, we add a 

�� ����� operation at the end of every constructor.
Second, we introduce a structured statement 	�
��	 �
� � � to stand for the com-

mon sequence

��

�� 
� � � 

�� 
�

where we assume  does not change 
. In fact, we only add the 	�
��	 statement, not
the ��

�� and 

�� operations, to the Spec� language syntax:

 ��� ��� � � �
	 	�
��	 � ���� � "�
��

where the type of the expression must be a non-���	�� reference type.
Third, for every reference-valued method parameter �, including ���� unless the

method is a constructor, we add the default precondition ����( �� (���� .
Fourth, we add the default postcondition ��( �� (���� to constructors.
Fifth, because it tends to be a more common specification pattern, we change the

definition of 
�
 in modifies clauses to exclude the ��( field (cf. page 26):
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Figure 9. The ����
�� and ���
��
� classes from Fig. 8, but here using ��� , ��	��
, and 	��
. The
methodology also forced us to change the implementation of���
�
 , because there is no way to insert unpack
and pack operations in Fig. 8 to live up to the three requirements of: (0) �� can be updated only if the subject is
mutable, (1) the precondition of ������ requires that the subject be valid, and (2) the ����
�� invariant must
hold at the time of a pack operation. One remaining verification problem, which we address in Section 3.2, is
how to make sure the observer ��� is valid when calling ������ .

$
����
%�� �� ���� 
� � �� �
for each “�����	�0 �” in  ��� do

for each “����� ��Æ�” in 0 do
case ��Æ� of

��
� � �
 � ������ ������� ��� � � �� ��(� �
� � �

Using these defaults and shorthands, we can simplify the ������ method of the

 ��	��� class as follows:
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���� ���������� ��
�	����	� � �� 	�
�����	� �����
� 
�� �
�

� 	�
��	 ������ � �� � � � �
�� �
�� �� �����

�� �/
�����������

�

Translation We change the translation to generate proof obligations that guarantee Pro-
gram Invariant 0.

We start by changing the translation of how objects and references come into being.
For objects, we add an assumption in the constructor, saying that the new object starts in
a mutable state (cf. page 25):

�� ��� ������  ��� "
�� �� �

���	���	 � Æ� � � �
��
�	�	��
���� � Æ� ������� �,�� ����� ��� �	����� � �
� 
����	 %����
������� �

����	 �,�� �� ���� � ���,�� � ��( � � ������� �

����	 �����
������������ �,�� ����� �� �
for each field “� � �” defined in � do
���,�� � � Æ� � �� 1��
��� �� �

�� ��"
�� ��
�

Remember that our defaults and shorthands add a 

�� ����� operation at the end of
"
�� (during normalization).

For arrays, we make newly allocated arrays appear in the valid state (note that array
types themselves do not have any object invariants) (cf. page 28):

�� ��� � �	� � �� �� �� �
� �
� 
� �	� �
� � �
��
� ��( � �� (���� � ��
� ���
�� �� ���	 �
� �� 


�

We add an extra precondition to field and array update (cf. page 27). For brevity,
here and in the rest of this paper, we assume that expressions like 
, �, � , and � in the
following translations are local variables; in general, we would first apply normalization
and then use �� �� � �� and �� �� � ��, as in Section 2.3.3.

�� ��
�� � �� �� �

��	�� 
 �� ���� � ��
� ��( � � ������� �
��
� � � �� �
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�� ����� � � �� �� �

��	�� � �� ���� � ���� ��( � � ������� �

��	�� 	 � � � � � �����,��� �

��	�� ������� �� ����������������� �
���� ����� � ��  �
������� ����� �� � � ��

Finally, we define the unpack and pack operations as follows, where 
 has static type
� .

�� ����

�� 
� �� �

��	�� 
 �� ���� � ��
� ��( � � (���� �
��
� ��( � �� �������

�� ��

�� 
� �� �

��	�� 
 �� ���� � ��
� ��( � � ������� �

��	�� �� ��
�(�
��� � �� ��
�(�
��� �
��
� ��( � �� (����

3.2. Inter-object Invariants

An object invariant can span several objects. Suppose object 
 refers to object � in its
invariant; then changing � might invalidate the invariant of 
. There are several strategies
for dealing with this situation [64,4,50,7,70,40,63]. In this section, we deal with the
common situation where accesses to � are controlled by 
. We say that � is part of the
representation of 
 and that 
 is the owner of �. We do not assume that � knows its
owner, and thus we handle the important case where � is an instance of a class defined in
a library. These object invariants are called ownership-based invariants, because they use
the ownership structure of the heap in the definition of which invariants are admissible.

Suppose we want to design a priority queue of tasks, implemented via a sorted
singly-linked list of nodes. Figure 10 shows a possible implementation. For a proper
working of the priority queue, we design the list so that it is strictly increasing, that is,
we need the following invariant for class /
��:

���
��
�� ���� �� ���� � ���
 � ���� ����
� (2)

But how can we deal with the fact that the modification of one node’s priority might
break the invariant in the previous node?

We establish a hierarchical ownership relationship on objects. We use ownership to
control that, outside an object’s invariant, the fields of the object can be mentioned only
in the invariants of its transitive owners. The methodology also enforces that when an
object is mutable, so are its transitive owners. Consequently, when the fields of an object
are changed, it can only violate the invariants of owners, but those owners are mutable,
which means the owners are in a state when the invariants are allowed to be violated.

For our list example, we let each node own its successor. To follow the methodology,
we must then arrange to expose all predecessors before modify a node.

We encode this ownership regime as follows:

� We extend the domain of the ��( field to ��������� (���� � �
��������. We say
an object is committed if its invariant is known to hold and its owner is not muta-
ble.
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Figure 10. An implementation of a priority queue. Formal parameter � denotes a task and � denotes a priority.
This version of the implementation points out three verification problems. First, the object invariant that nodes
of the priority queue are sorted needs to mention more than one object (namely, ������
�� �����), and that is
not allowed by the admissibility condition in Section 3.1. Second, how do we know that the receiver objects of
the two calls to ���
�� are valid? Third, method ���
�� might change �� and the �
�� field of an unbounded
number of ���
 objects, but all of these modifications could not possibly be listed explicitly in the modifies
clause of ���
�� .

� We introduce a field modifier �	
, which specifies that a field refers to a repre-
sentation object.

�����$
��!�� ��� �	


The �	
 modifier is allowed on fields having reference types.

We can now formalize the meaning of �	
 fields, which establishes an additional
property:

Program Invariant 1 For any �	
 field � declared in a class � ,
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Figure 11. The ����
�� class, updated from Fig. 9. Here, the observer is captured by the subject’s constructor
to claim ownership of it. The ���
�
 method temporarily disentangles that ownership relation in order to call
������ with two valid objects.

�� 
 � 
���( �� ������� � 
�� � ���� � 
�� ���( �� ������� �

where the quantification ranges over non-null, allocated objects of type � , is a program
invariant.

Admissible invariants for our ownership regime are now restricted as follows: An
object 
 may depend only on the fields of 
 and the fields of objects transitively owned
by 
. We check this restriction syntactically, allowing an invariant to mention a field-
select expression ��������� � � � �� �� only if �� �� � � � � � are declared to be �	
 fields. The
object invariant (2) of our priority queue example in Fig. 10 has this form, and is thus
admissible.

Using our refined methodology, we can solve two of the verification problems in
Fig. 10. We declare ,� and ���� as �	
 fields, which make invariant declaration (2)
admissible. Program Invariant 1 and the new definition of unpack let us call 
�	��� ,
because they establish that the receiver is valid.

Using our refined methodology, we can also solve the last verification problem with
the subject-observer example in Fig. 9. The verifiable code is shown in Fig. 11.

The problem in Fig. 9 was that, on entry to������, we know nothing at all about the
validity of 
�� , but we need to know that it is valid when we invoke its /
���� method.
We do know that the subject is valid on entry to ������. To entangle the validity of the
observer with the validity of the subject, we make the former a representation object of
the latter, see the �	
 keyword in Fig. 11.

We now need to admit to “capturing” the valid observer parameter 
 in the  ��	���
constructor. We do that by listing 
���( in the modifies clause of that constructor.

Finally, when the observer is owned by the subject, it is not possible to pass both
of them as valid objects to /
���� . Thus, we temporarily disentangle them, as shown in
Fig. 11. While this does make the program verify, it is clumsy. A better solution would
be to make the subject and observer peers, which means they have the same owner. This
solution is explained in detail elsewhere [64,50,57].

Translation We change the translation of unpack and pack operations to reflect changes
in the committed-status of objects (cf. page 38). For a local variable 
 of static type � :
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� ��( � � (���� �
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� ��( � �� ������� �
for each field “�	
 � � �” defined in � do
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����	��
� � � �� ���� � ����
� � �� ��( � �� (����
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����	��
� � � � ����

�

�� ��
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� �� �

��	�� 
 �� ���� � ��
� ��( � � ������� �

��	�� �� ��
�(� ��
���� � �� ��
�(� ��
���� �
for each field “�	
 � � �” defined in � do

��	����
� � � � ���� � ����
� � �� ��( � � (���� �

for each field “�	
 � � �” defined in � do
� 
����	��
� � � �� ����� ����
� � �� ��( � �� �
�������

�� 
����	��
� � � � ����

� �
��
� ��( � �� (����

Method Framing Revisited With the meaning of modifies clauses defined in Sec-
tion 2.3.2, methods 
����� and 
�	��� in Fig. 10 do not verify. That definition insisted
on that every non-new object with a modified field be mentioned explicitly in the modi-
fies clause. But that’s absurd. We need some form of abstraction in our modifies clauses.
Representation objects establish a natural abstraction boundary that we can use.

With ownership, only owners are allowed to have invariants that depend on repre-
sentation objects. Since representation objects are implementation details, code should
not depend on the exact values of committed objects. Therefore, we now state a more re-
laxed meaning of modifies clauses: committed objects are allowed to be changed without
explicitly being mentioned in modifies clauses.

We change the computing of the postcondition for a Spec � modifies clause (cf.
page 26) by adding another disjunct:

��$
� �� ����� �
�����	�� �
	����	� �� 
� �	� � � ��
�	 �

 �� ���� � �������
� ���
�� �
$
����
%�� �� ���� 
� � �� �
��� � ��( � � �
������� �
��
� � � � �������
� � � �

With the relaxed meaning, the 
����� method in Fig. 10 does not need to mention any
/
�� object in its modifies clause. Likewise, method 
�	��� does not need to explicitly
mention the modifications of its successor nodes. Since ���� is valid on entry, methods
must still announce modifications of fields of ����, which is why we wrote the modifies
clauses of 
����� and 
�	��� in Fig. 10 the way we did. This solves the third verification
problem in Fig. 10.



42 K. R. M. Leino and W. Schulte / A Verifying Compiler

3.3. Inheritance and Invariants

Inheritance and virtually dispatched calls are key features of object-oriented program-
ming languages. To discuss their verification problems in more detail, let us introduce the
concept of a class frame. We say: Each subclass defines one class frame, consisting of
its instance variables. Applied to our ���� example in Fig. 3, we see that a ���� has two
frames: the ���	�� frame, and the ���� frame. The latter contains ���� ’s only instance
field, � . A "��������� also has a third frame, containing "��������� ’s only instance
field, �. Single inheritance thus results in a sequence of frames.

Let us now look at the problems involved in virtual calls. First, we see that virtual
calls lead to classical callback scenarios. For instance, let � be a "��������� ; then a
call ��
��"���� first enters its ���� frame, which when evaluating �����.���� reenters
its ���� frame; next, it evaluates  ���� � ��, which enters the "��������� frame, which
through a base call reenters the ���� frame. How can we maintain the invariants in ����
and/or "��������� under such dynamic control flow?

For verification of invariants in the context of inheritance, we let each class frame
declare its own invariant. The invariants from different frames of an object are enforced
separately. An invariant declared in a class � is admissible if every field-select expres-
sion has the form ��������� � � � �� �� where, as before, �� �� � � � � � are declared to be �	

fields, and the first field (� or � ) is declared in � or a superclass thereof.

Here is an example:

��
�� ���� �
��� � �
���
��
�� 	 � � �
� � �

��
�� "��������� � ���� �
��� ��
���
��
�� � � � �
� � �

The direct superclass frame of "��������� , namely ���� , can be viewed as a rep “ob-
ject”, or rep frame, of "��������� objects. This matches the rep model nicely, since
there is only one conceptual pointer from the subclass frame to its immediate superclass
frame. Note that, just as for rep objects, the invariant of the “owner” "��������� is
allowed to mention fields declared in rep frames (i.e., superclasses).

As in the rep model, we require that all calls (or, more precisely, all 	�
��	 oper-
ations) on the rep frame go via calls to its owner, i.e., its subclass frame. Consequently,
most methods need to be virtual; you override them in each subclass explicitly, and you
always use base calls to transfer control into the superclass, if needed. Embedding a base
call in 	�
��	 blocks causes an object’s frames to be exposed in a stack-like fashion.

We could introduce an ��( field for each frame, but since virtual calls and expose
statements are used in a highly styled fashion, we can use fewer ghost variables by letting
the ��( field of an object refer to the most derived frame of the object that is valid.
That is, 
���( �� � means that 
 is valid for frame � and all its superclass frame. The
properties 
���( � (���� and 
���( � ������� that we introduced in Section 3.1 are
now represented as 
���( � �����
� and 
���( � ���	��, respectively, assuming that
���	�� has no invariant.

An object can become committed only when all its class frames are valid. To encode
the committed state of an object, we introduce a fictitious type named�
������� , which
is modeled as a subtype of all types in the program. Thus, 
���( � �
������� means
the the object 
 is committed, previously written as 
���( � �
������� .
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With our new encoding of ��( , the following restates the previous Program Invari-
ants 0 and 1 in the context of subclasses:

Program Invariant 2 For any class � with an admissible invariant,

�� 
 � �����
� �� � � 
���( �� � � 
�(� ��
�� �

and for any �	
 field � declared in � ,

�� 
 � 
���( �� � � 
�� � ���� � 
�� ���( � �
������� �

where the quantifications range over non-null, allocated objects, are program invariants.

Translation The following definitions of unpack and pack take the new representation
into account. Let � be the static type of 
, and let  be the immediate superclass of �
or, if � is an array type, let  be ���	��; then (cf. page 41):
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for each field “�	
 � � �” defined in � do
� 
����	��
� � � �� ����� ����
� � �� ��( � �� �
�������

�� 
����	��
� � � � ����

� �
��
� ��( � �� �

Let � be a field declared in a class � ; then field update is redefined as follows (cf.
page 37):

�� ��
�� � �� �� �

��	�� 
 �� ���� � 
���
� ��( � �� � � �
��
� � � �� �

and array update is defined as follows:

�� ����� � � �� �� �
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�	��� �
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So that it can be used when proving programs, we add Program Invariant 2 as ax-
ioms.
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for every class and applicable field. In these axioms, 
�(� ��
�� is expanded to the expres-
sion declared to be the invariant of class � , with 
 replacing occurrences of ����.

Finally, we add an axiom that says that �
������� is a subtype of all types.


���� ��� ��
�	 � �
������� �� � � �

Method Preconditions Revisited Exposing an object frame by frame introduces another
problem: for every class � , the definition or override of a virtual method � in class
� is going to unpack the object, and therefore it needs the precondition ��( � � .
For example, to verify the example in Fig. 3 using our methodology, the ���� Æ ��

and "��������� Æ �� method implementations must expose the object for the ���� and
"��������� frames, respectively, before modifying the fields � and �. To meet with
the preconditions of such 	�
��	 statements, ���� Æ �� would need a precondition of
��( �� ���� and "��������� Æ �� would need a precondition of ��( �� "��������� ,
but a virtual method and its overrides cannot arbitrarily change the method precondition!
What condition would we check at call sites?

For call sites that invoke the a virtual method � by �
�	��, we can check differ-
ent preconditions at different call sites, because base calls are statically bound. That is,
calling �
�	�� invokes a particular implementation, so we can arrange to verify, at the
call site, the particular precondition required by that implementation. For a dynamically
dispatched call to �, we cannot statically decide which overridden method will be exe-
cuted, yet we need to verify, at the call site, that the precondition required by the invoked
override holds. By demanding that every class override all inherited virtual methods, the
condition to be verified at a dynamically dispatched call to 
�� is ��( � �����
�.

To support these scenarios where different implementations of a method need dif-
ferent preconditions, we introduce a polymorphic invariant level, written as ��( � �:

&������ ��� � � �
	 �

where � can appear only in the specifications of virtual methods, and the type of � is that
of a run-time type. The idea is that the definition of a method � writes ��( � � in its
precondition. For an implementation given in a class � , ��( � � means ��( � � , and
for a dynamically dispatched call to 
��, it means ��( � �����
�.

Our ���� and "��������� classes can now be specified, implemented, and verified
as shown in Fig. 12. Note that 
��"� is a non-virtual method. With its given specifi-
cation, its implementation cannot directly perform any update, because it cannot do the
necessary 	�
��	. However, the implementation can still call virtual methods that will
expose the object and modify its state.
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Figure 12. The 	
�� and �
����	
�� classes from Fig. 3 with polymorphic invariant levels. For brevity, we
omit all other contracts.

Defaults and Shorthands To remove the burden that subclasses must override all vir-
tual methods, our normalization will, for any non-overridden inherited method, insert an
override whose body exposes the object and calls the base implementation of the method.
For example, for a subclass of ���� that does not explicitly override methods  �� and
.�� , normalization will insert:

��	����	 ����  ������ ��
� 	�
��	 ������ � �
�	� ������ � �
��	����	 ��� .����
� ��� � � 	�
��	 ������ � � � .����� � �	���� � � �

Since the value of ��( is now a type, no longer a boolean, we must make some ad-
justments in our default method specifications (cf. the discussion on Defaults and Short-
hands in Section 3.1). For a constructor in a class � , we use the default postcondition

	����	� ��( �� � �
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For every virtual method, we use the default precondition

�	����	� ��( � ��

Third, for every reference-valued method parameter �, including ���� unless the method
is a constructor or virtual method, we add the default precondition

�	����	� ����( �� �������

Translation We adapt the translation to BoogiePL� as follows. For each definition
or override of a virtual method with a polymorphic invariant level, we generate two
BoogiePL� procedure declarations (cf. page 24):

�� ��$��,
�$
��!�� � � ������  ��� "
�� �� �

���	���	 �

Æ������� Æ� ������� �,�� ����� ��� �	����� ��� ��� _������ ����
as the previous translation into � Æ�, but replacing � with ����������


���	���	 � Æ� ������� �,�� ����� ��� �	����� ��� ��� _������ ��� �
as before, but replacing � with �

��
�	�	��
���� � Æ� ������� �,�� ����� ��� �	����� ��� ��� _������ ���
as before

For a call 
���� � �� where 
 has static type � and � is a virtual method, we use
� Æ������� Æ� in the translation. For a call �
�	���� � �� in a class whose superclass is
� , we use � Æ� in the translation. The implementation is given for � Æ�. Our translation
does not give any implementation to � Æ������� Æ�; intuitively, this implementation is
provided by the runtime system, which performs the dynamic dispatch by a case split
over the run-time type of the receiver object (typically implemented by dereferencing the
v-table).

3.4. Summary

The verification of programs requires invariants, but, as we have seen, dealing with
invariants presents several verification problems. In this section, we have presented a
methodology the structures a program and its specifications in such a way that it is pos-
sible to perform sound modular verification. The methodology introduces the field mod-
ifier �	
, the ghost field ��( , the 	�
��	 statement, and the invariant-level literal �.
We can now specify and generate verification conditions for programs with reentrancy,
subclassing, dynamic dispatch, and invariants that span several objects and class frames.

4. Multi-threaded Programs

Multi-threaded object-oriented programs are becoming mainstream: servers are already
multi-threaded, but soon we will have multi-cores on every desktop, too. So the ques-
tion arises: Can we adapt the single-threaded verification methodology to verify multi-
threaded programs? In particular, can we maintain invariants and also prevent data races
and deadlocks?

Section 4.0 introduces a methodology to avoid data races for individual objects.
Section 4.1 extends the methodology to guarantee inter-object invariants over rep objects.
Section 4.2 concludes by extending this methodology to protect against deadlocks.
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Figure 13. A simple program to illustrate the possible effects of race conditions. Method ��� is invoked
twice in this program (via the  ��

�Æ��
�� method), but the final value of �
�!
���� may end up as either
1 or 2, depending on how the runtime system’s thread scheduler happens to interleave the thread executions.

4.0. Data Race Prevention

A data race occurs in a multi-threaded program when one thread writes a field or array
element, another thread reads or writes the same field or array element, and neither thread
performs a synchronization operation that would give it exclusive access to the data. Data
races almost always indicate a programming error and such errors are extremely difficult
to find and debug due to the nondeterministic interleaving of the thread executions.

Figure 13 shows this problem using a straightforward program. An instance of the
�
����� class is shared by two threads. Looking at the *�� method of the �
�����

object, which is invoked by the �,���� Æ ���� method, each thread appears to increment
the variable by 1. However, in some interleavings of the thread executions, the combined
effect is not to increment the variable by 2. In particular, both threads might read the
variable when its value is 0, in which case each of the two threads will set the variable to
1.

Like in C� and Java, every object in Spec� also acts as a lock. These locks can be
used to ensure mutual exclusion among threads by using a lock statement:

 ��� ��� � � �
	 ���� � ���� � "�
��

where the expression must be of a reference type. The execution of ���� �
� � � ac-
quires the lock 
, executes  , and then releases 
. The acquire operation first waits until
a time when no thread holds 
, so that the acquisition of 
 will maintain the program
invariant that each lock is held by at most one thread at a time.

The locking mechanism prevents multiple threads from holding 
 at the same time,
but it does not prevent threads from accessing 
’s fields. We introduce a methodology
where a thread � can access a field of an object 
 only if 
 is thread local—that is, the
thread that created the object has not made the object available to other threads—or �
holds the lock 
. We call the set of objects that a thread can access its access set. By
making sure that access sets are disjoint, we prevent data races.

The life cycle of each object can now be described as follows.

� A new object is initially thread local (that is, unshared), and is included in the
access set of the creating thread.



48 K. R. M. Leino and W. Schulte / A Verifying Compiler

� An unshared object can be made accessible to other threads by sharing it. The
sharing operation removes the object from the thread’s access set.

� A shared object can be exclusively acquired by locking it. When (and if) the
acquisition succeeds, the object is added to the access set of the thread.

� When a locked object is released, it is removed from the access set of the thread
and once again becomes available for acquisition.

Language Constructs We introduced the lock statement above. Here, we introduce
ghost variables and other constructs needed to write and specify multi-threaded pro-
grams.

� We introduce a new keyword that denotes the thread object of the current thread:

��
� ��� � � �
	 ���

The type of ��� is the predefined class �,���� , and it evaluates to a different
value for each thread.

� For each object and array, we introduce a boolean ghost field �,���� , which indi-
cates if the object or array is shared or thread local. Note that �,���� is monotonic
in the sense that once an object becomes shared, it remains shared forever.

� For each object and array, we introduce a ghost field ���,���� , which refers to
the thread with access to the object or ���� if the object is free. Thus, the access
set of a thread � is the set of objects whose ���,���� field is � . We use this
encoding of access sets because it provides us with an appropriate and existing
mechanism to handle modifications of access sets (see the discussion on Method
Framing Revisited in Section 3.2). The only operation allowed on ���,���� is to
compare it with ���, and ���,���� is not admissible in object invariants.

� We introduce a statement for sharing thread-local objects:

 ��� ��� � � �
	  ,��� ���

 ,��� ��� ��� ��
�	 ���� �

where the expression must be of a reference type.

Finally, in Fig. 14, we give the specifications of the predefined classes �,���� and
*�������. The precondition and modifies clause of the �,���� constructor say that a
*������� object cannot be used with more than one thread. Similarly, the precondition
of  ���� and the inclusion of ��������,���� in the modifies clause of  ���� prevent a
thread from being started more than once.

Example Let us consider a variation of the Fig. 13 introductory counter example, where
each thread runs a session object and several session objects share the counter, see
Fig. 15.

The main thread creates a new counter, makes it available for sharing, and creates
two session objects, � and �. At that point, the sessions objects are thread local to the
main thread.

Next, the two threads � and � are created. They take � and � as arguments, both of
which are still thread local to the main thread. According to its specification, the thread
constructor may remove the *������� object from the caller’s access set; hence, the
main thread cannot access � and � after constructing the threads.
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Figure 14. The predefined classes  ��

� and ����
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 .

/* main thread */
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Figure 15. An example where multiple threads run session objects that use a shared counter object.

Next, threads � and � are started, which implicitly calls the *�� method on � and �,
respectively. Each session object’s *�� method is executed with ��� set to the executing
thread; here, � and �, respectively.

Defaults and Shorthands Like the specifications we saw earlier for single-threaded pro-
gram, specifications of multi-threaded programs are written in a stylized fashion. To sim-
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plify the program text, we introduce the following defaults (applied during normaliza-
tion). For every constructor, we use the default postcondition

	����	����,���� �� ��� �� 
�,���� �

and for every non-constructor method, we use the default precondition

�	����	����,���� �� ����

These defaults have the additional advantage that they always hold in single-threaded
programs. Thus, any part of a program that would verify under the single-threaded
methodology will also verify under the multi-threaded methodology.

Most methods do not modify �,���� or ���,���� , so, as we have already assumed
in examples, we change the definition of 
�
 in modifies clauses to exclude these fields
(cf. page 36):

$
����
%�� �� ���� 
� � �� �
for each “�����	�0 �” in  ��� do

for each “����� ��Æ�” in 0 do
case ��Æ� of

��
� � �
 � ������ ������� ��� � � �� ��( �
� �� �,���� � � �� ���,����� �

� � �

If needed, a modifies clause can list these fields explicitly.
The defaults let us omit several of the specifications we showed explicitly in Fig. 15.

Translation Since we don’t intend to verify the implementation of �,���� Æ ���� , we
never need to keep track of more than one value for ���. Therefore, we simply encode
��� as a global constant with an unknown value:

����� ��� � �	� �

���� ��� �� ���� � ��������� � �,���� �

The translation of the expression ��� is:

�� ������� �
�� ������� � ���

In the translation of constructors, we add the assumption


����	 
���,�� � �,���� � � ���,�� ����,���� � � ��� �

on entry to the implementation declaration of � Æ� (cf. page 37).
We record the monotonicity of �,���� as part of the definition of heap successors

(cf. page 22):


���� �� _
�� � ��	� ��
�	�
��� _��% � ��	� ��
�	�
�� �
�������
��_
�� � _��%� �
%����
�����_��%� �
�� � � �	� � _
�� �� � ���
�� � _��% �� � ���
�� � �
�� � � �	� � _
�� �� � �,���� � � _��% �� � �,���� � ��
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We change the definedness of field-access and array-access expressions. For � a field
different from ���,���� , we have (cf. page 31):

�� ��� ����,���� �� � �� ��� �� � �� ��� �� �� ����

�� ��� �� �� � �� ��� �� � �� ��� �� �� ���� � ���� ��� ������,���� � � ���

�� ��� �� ��� � �� ��� �� � �� ��� �� �� ���� � ���� ��� ������,���� � � ��� �
�� ��� �� � 	 � �� ��� �� � �� ��� �� � �����,��� ��� ���

Note that the reading of the ���,���� field may constitute a race condition, but since the
only operation we allow on ���,���� is comparing it with ���, any such race condition
is benign because 
����,���� �� ��� is a stable condition—only a thread itself changes
���,���� to or from the value ���. This argument also applies to the translations below.

Finally, we change the translation of various statements. For field and array element
updates (cf. page 43):

�� ��
�� � �� �� �

��	�� 
 �� ���� � ��
����,���� � � ��� � 
���
� ��( � �� � � �
��
� � � �� �

�� ����� � � �� �� �

��	�� � �� ���� � �������,���� � � ��� � ���� ��( � � 
�	��� �

��	�� 	 � � � � � �����,��� �

��	�� ������� �� ����������������� �
���� ����� � ��  �
������� ����� �� � � ��

For the unpack and pack operations (cf. page 43):

�� ����

�� 
� �� �

��	�� 
 �� ���� � ��
����,���� � � ��� � ��
� ��( � � � � � �
� � �

�� ��

�� 
� �� �

��	�� 
 �� ���� � ��
����,���� � � ��� � ��
� ��( � � � � � �
� � �

We define the ��
�	 statement as follows:

�� ����
�	 
� �� �

��	�� 
 �� ���� � ��
����,���� � � ��� �

��	�� 
��
� �,���� � �
��
� �,���� � �� ���	 �
��
����,���� � �� ����

The lock statement is more involved:
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�� ������ �
� � ��� �

��	�� 
 �� ���� � ��
� �,���� � �

����	��
����,���� � �� ��� �
� �
� 
��+���� ��	� ��
�	�
�� �

��+��� �� � �
�
��� � � 
����	 �������
��
��+������ �

����	 �� � � �	� � � ��
�	 � � �� 
 � 
��+����� � � � � ��� � � � � �

����	��
����,���� � � ����

� �
��
����,���� � �� ��� �
�� ��� ��� �
��
����,���� � �� ����

Note that the precondition of the lock statement reads the field 
��,���� , which
may constitute a race condition. However, any such race condition is benign, since if the
precondition 
��,���� holds, then it is also stable (due to the monotonicity of �,���� ).

The lock statement is thread non-reentrant, which means that a thread will deadlock
if it attempts to lock a lock that it already holds. We deal with deadlocks in Section 4.2;
here, we simply assume 
����,���� to be different from ��� on entry to the lock state-
ment, since this simplifies the bookkeeping we do around the translation of the body of
the lock statement.

The purpose of the �
��� construction in the translation of the lock statement is
to simulate the possible interleavings of other threads, and in particular to simulate their
possible effects on the fields of 
. The following example illustrates the effect of this
�
��� on the verification. Let 
 be an object of a class that has an integer field � :

��� � �
���� �
� � � � 
�� � �
���� �
� � 
��	�� � �� 
�� � � /* this assert may fail */

This example has no race condition. However, since other threads may acquire 
 and
change 
�� between the two lock statements, the assertion may fail. The �
��� com-
mand at the beginning of the translation of the second lock statement causes the verifica-
tion to “forget” the value of 
�� from the first lock statement, which causes the verifica-
tion of the assert to fail.

The translation says that the executions to be verified are those in which the
�
��� command establishes the assumption ��
����,���� � � ����, that is, those
where 
 is not held in the state after the �
��� command. Intuitively, the command

����	 ��
����,���� � � ���� waits until no other thread holds 
. The assignments
��
����,���� � �� ��� and ��
����,���� � �� ���� simulate the acquiring and releas-
ing of 
’s lock.

4.1. Invariants and Ownership Trees

We have now protected against race conditions. By itself, freedom from race conditions
does not guarantee that a program behaves more correctly. For example, consider again
our introductory counter example in Fig. 13. If we wrap a ���� ������ block around the
reading of field ������
�� and wrap another ���� ������ block around the update of
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������
�� , then we have avoided race conditions, but we still end up with a program
that may fail to increment ������
�� by 2. In this section, we consider the locking of
whole data structures, and in particular locking that will maintain object invariants.

To protect invariants by locks, we expand our methodology to guarantee the follow-
ing property:

Program Invariant 3 In a multi-threaded program,

�� 
 � 
��,���� � 
����,���� � ���� � 
���( � �����
� �

where 
 quantifies over non-null, allocated objects, is a program invariant.

This property says that when an object is shared but free, then it is valid. In other words,
an object invariant can be violated only when the object is in the access set of some
thread. To enforce this program invariant, we must ensure that objects are valid when
they become free, which affects the precondition of the ��
�	 operation.

To refine the multi-threaded methodology to ownership trees, we need to consider
what to do with committed objects. According to the single-threaded methodology, oper-
ating on a committed object 
 must start with unpacking 
’s owner, which makes 
 valid.
Thus, it is natural to let the unpack operation add the representation objects to the thread’s
access set. To avoid race conditions, we must then prevent other threads from gaining
access to committed objects. We will do that by disallowing �	
 fields from referring
to shared objects. Under this refined methodology, one single lock statement locks an
entire ownership tree, protecting all its invariants. Note that in the refined methodology,
an “unshared” object can be accessed by different threads, but only if the object is part of
an ownership tree whose root is shared—that is, when we previously said “thread local”,
we might now want to say “ownership-tree local”.

Program Invariant 4 In a multi-threaded program,

�� 
 � 
���( � �
������� � 
����,���� � ���� �

where 
 quantifies over non-null, allocated objects, is a program invariant.

An object 
 can in a non-�	
 field, say 
�� , hold on to a reference to a shared object.
To access the data structure behind 
�� , one would then first need to lock 
�� . In order
to meet with the precondition of the lock statement, it is necessary to know that 
�� is
shared. But the conjunct ������ ��,���� is admissible in an object invariant only if � is
a �	
 field, and we have just disallowed �	
 fields from referring to shared objects.
Instead, we introduce another field modifier:

�����$
��!�� ��� � � �
	 ��
�	�

Declaring a field � with ��
�	� adds the implicit object invariant:

������ �� ���� 		 ������ ��,����

Because �,���� is monotonic, it is sound to dereference � in this way in an invariant
even when � is not a representation object.

The implicit invariants of �	
 and ��
�	� fields guarantee the following property:
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Program Invariant 5 In a multi-threaded program, for any �	
 field � declared in a
class � ,

�� 
 � �����
� �� � � 
���( �� � � 
�� � ���� � 

�� ��,���� �

and for any ��
�	� field � declared in � ,

�� 
 � �����
� �� � � 
���( �� � � 
�� � ���� � 
�� ��,���� �

where the quantifications range over non-null, allocated objects, are program invariants.

Translation We change the translation of unpack and pack to update the���,���� field
of representation objects. The pack statement also needs to check the implicit invariants
that come from �	
 and ��
�	� fields. Let � be the static type of 
, and let  be the
immediate superclass of � or, if � is an array type, let  be ���	��; then (cf. page 51):

�� ����

�� 
� �� �

��	�� 
 �� ���� � ��
����,���� � � ��� � ��
� ��( � � � �
��
� ��( � ��  �
for each field “�	
 � � �” defined in � do
� 
����	��
� � � �� ���� �
����
� � �����,���� � �� ��� �
����
� � �� ��( � �� �������
� � ��

�� 
����	��
� � � � ����

�

�� ��

�� 
� �� �

��	�� 
 �� ���� � ��
����,���� � � ��� � ��
� ��( � �  �

��	�� �� ��
�(� ��
���� � �� ��
�(� ��
���� �
for each field “�	
 � � �” defined in � do

��	����
� � � � ���� �

�����
� � �����,���� � � ��� � ����
� � �� ��( � � �������
� � �� �

����
� � �� �,���� �� �

for each field “��
�	� � � �” defined in � do

��	����
� � � � ���� � ����
� � �� �,���� � �

for each field “�	
 � � �” defined in � do
� 
����	��
� � � �� �����
����
� � �� ��( � �� �
������� �
����
� � �����,���� � �� ����

�� 
����	��
� � � � ����

� �
��
� ��( � �� �

To maintain Program Invariant 3, we add precondition 
���( �� 
����� to the
��
�	 statement (cf. page 51):
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�� ����
�	 
� �� �

��	�� 
 �� ���� � ��
����,���� � � ��� �

��	�� 
��
� �,���� � �

��	����
� ��( � � �����
� �
��
� �,���� � �� ���	 �
��
����,���� � �� ����

When locking, we also have to forget the knowledge about owned objects (cf.
page 52):

�� ������ �
� � ��� �

��	�� 
 �� ���� � ��
� �,���� � �

����	��
����,���� � �� ��� �
� �
� 
��+���� ��	� ��
�	�
�� �

��+��� �� � �
�
��� � � 
����	 �������
��
��+������ �

����	 �� � � �	� � � ��
�	 �
��� ����,���� � � ��� � 
��+����� � � � � ��� � � � � �


����	��
����,���� � � ����

�
��
����,���� � �� ��� �
�� ��� ��� �
��
����,���� � �� ����

Note how we deal with forgetting the knowledge about owned objects. Unlike the pre-
vious translation of the lock statement, where we only forgot the fields of the object be-
ing locked, we now erase knowledge about the entire program state, except for the state
of the objects that are accessible by the current thread. This reflects the recent possible
effects of other threads on the ownership tree rooted at 
. It also erases knowledge of
committed objects whose transitive owners are held by the current thread. This encoding
is convenient, because it lets us write the �
��� construction without defining exactly
which committed objects are reachable from the thread’s accessible objects—something
that presents a difficulty for automatic theorem provers anyway—and we argue that this
erasing is okay, because a program should rely only on the invariants of, not the exact
field values of, committed objects (this is analogous to how we encoded the postcondi-
tion contribution of modifies clauses, see the discussion on Method Framing Revisited
in Section 3.2).

Finally, the translation also encodes Program Invariants 3 and 5 as axioms (but not
Program Invariant 4, because we don’t need it in verification).


���� �� ,� ��	� ��
�	�
��� 
� �	� �
%����
�����,� � 
 �� ���� � ��
� ���
�� �
��
� �,���� � � ��
����,���� � � ���� � ��
� ��( � � �����
� � �

For every class � :
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�	� �
����� �� �
���
��
�� �� �� �����
��� �� �

 ����
���
����� �� � ��� ���
�	����	� �� �� �����

� ������� � �� � ������� � �� � �

��	����	 ���� *����
� ����	 ����	� �

���� ���� � �� �
����� �
�

�
�

Figure 16. The full �
����� class for the counter example in Fig. 15. Field �� is declared with ����
�, since
the session object needs to keep track of the fact that it is okay to lock it.


���� �� ,� ��	� ��
�	�
��� 
� �	� �
%����
�����,� � 
 �� ���� � ��
� ���
�� �
�����
� �� � � ��
� ��( � �� � �

for each field “�	
 � � �” defined in � do
��
� � � � ���� � 
����
� � �� �,���� �

for each field “��
�	� � � �” defined in � do
��
� � � � ���� � ����
� � �� �,���� �

� �

Example Let us continue the example from Fig. 15 by showing the whole  ����
�

class, see Fig. 16.
It is instructive to take a closer look at the verification of the  ����
� Æ*�� method:

0. On entry, the typing assumption in the translation of method implementations
tells us ������,��� ��  ����
�. Also, the default precondition tells us �,�� ���( �
 ����
�, which by the reflexivity of �� yields �,�� ���( ��  ����
�.

1. The heap,�, is a syntactic target of the loop, since the loop calls a method ($� ,
page 30). What is known about the heap on an arbitrary iteration thus comes from
&

�$
� (page 30), which applies the method’s modifies clause to the loop.
The modifies clause of *��, declared in class *������� in Fig. 14, is �����
,
which stands for the fields of ���� except ��( , �,���� , and ���,���� . Thus,
every iteration of the loop starts with���,�� � ��( � and���,�� ����,���� � having
the same values as when the loop was first reached.

2. By steps 0 and 1, we conclude that

������,��� ��  ����
� � �,�� ���( ��  ����
�

holds on entry to each loop iteration.
3. By step 2 and Program Invariant 2, we conclude that �,�� satisfies the  ����
�

invariant on entry to each loop iteration, namely ���,�� � �� � �� ����. And by
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step 2 and Program Invariant 5, we conclude that the ��
�	� field �� is shared:
�����,�� � �� �� �,���� �. These properties about ���,�� � �� � are what we need to
discharge the precondition of the lock statement.

4. By the encoding of the lock statement, and in particular by the conditions
assumed after the �
��� command, we have that the object being locked,
���,�� � �� �, is free. Since ���,�� � �� � is checked to be shared before the �
��� ,
the definition of �������
� tells us that it remains shared after the �
��� . By
Program Invariant 3, we thus have that ���,�� � �� � is valid, which is the precon-
dition we need to establish for the call to 
��.

5. We deduce that ���,�� � �� � is unchanged by the call to 
��, which among other
things means it is still non-null, as follows:

� The encoding of the modifies clause of 
�� lets us conclude that the call
does not change any field of �,�� , provided �,�� is not the target of the call
(���,�� � �� �) and provided �,�� is not committed at the time of the call.

� We deduce the dis-equality �,�� �� ���,�� � �� � from the assumption about
�����,�� � �� �����,���� � at the beginning of the encoding of the lock state-
ment.

� According to proof step 2, �,�� is not committed on entry to the loop. More-
over, lock acquisition does not change fields of objects in the thread’s access
set, and proof step 1 tells us that ���,�� ����,���� � � ��� holds on entry to
the loop. )

6. By the definition of �������
� , which upon return from a call we get to assume
relates the old and new heap of the call, we have that ���,�� � �� � remains shared
after the call to 
��.

7. By steps 5 and 6, we are able to discharge the proof obligation associated with
the pack operation at the end of the 	�
��	 block.

4.2. Deadlock Prevention

A deadlock occurs when there is a nonempty set of threads, each of which waits for a
lock held by another thread in the set. Deadlocks are programming errors.

The prototypical example for a deadlock is the dining philosophers problem [18],
where � philosophers (the threads) sit at a round table, spending their time eating and
thinking. There are � forks available (the shared objects), placed between adjacent
philosophers at the table. Eating requires the use of two forks. A philosopher can only
pick up one fork at a time (philosopher locks a fork). In this setting, there is a possibility
of a deadlock, for example if every philosopher holds a left fork and waits for a right
fork.

Deadlocks can be avoided if all shared objects are partially ordered and each thread
acquires shared objects in ascending order.

We let a program construct a partial order on shared objects. We make this order
available in Spec� programs by introducing an irreflexive operator:

� ��� � � �
	 �

where the operands of � must be the keyword ��������� (explain shortly) or be of a
reference type. Operator� has the same binding power as �.
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We also change the share statement so that one can specify the position of a newly
shared object in this order:

 ,��� ��� ��� ��
�	 ����� � ���� � ����� �

where all expressions must have a reference type. In the statement ��
�	 && � 
 �

�� �, it is the expression 
 that is being shared. It is checked to evaluate to a non-null
value. The objects specified by && are lower bounds and the objects specified by ��

are upper bounds. For every pair of objects � and � in && and �� , respectively, if both
� and � are non-null, then the share statement requires � � �, which ensures that there is
a place for 
 between && and �� .

Finally, we introduce a keyword ��������� that indicates an upper bound on all
the locks acquired by the current thread.

��
� ��� � � �
	 ���������

To avoid deadlocks, a precondition of the ���� �
� statement is that 
 lies above
���������. Statement ���� �
� � � then sets ��������� to 
 before execut-
ing  , and restores ��������� to the old value of ��������� after executing  .
��������� can be used only as an argument to �.

Example Dijkstra proposed a solution to avoid deadlocks of dining philosophers by
ordering all the forks and requiring the philosophers to pick up their respective forks in
that order [18]. We show that solution for � � � in Fig. 17. The forks are named � , � ,
and ) and the philosophers are named �, �, and �. Philosopher � will pick up fork �

before fork � , philosopher � will pick up fork � before fork ) , and philosopher � will
pick up fork � before fork ) . Since all philosophers adhere to the same global fork order,
thus creating an asymmetry around the table, we avoid deadlocks.

Due to timing issues, this solution might still suffer from starvation. To avoid that
problem, one can for example introduce queues of eating requests, that guarantee equal
access to a fork by adjacent philosophers. We do not discuss this solution any further.

Prelude We extend the prelude by encoding ��������� as a global variable:

�
� �
���
��� � �	� �

We introduce an strict partial order called &
��-���� (i.e., the relation &
��-����
is irreflexive and transitive).

�������� &
��-������	� � �	�� �	����� ������ �

���� �� 
� �	� � 
&
��-�����
� 
� � �

���� �� 
� �	� � �� �	� � 3 � �	� �
&
��-�����
� �� � &
��-������� 3� � &
��-������� 3� � �

Just like we predefined the ���	�� class and added a constructor to the prelude,
we predefine the *������� class (see Fig. 14). This lets us give the *�� method a
specification that is not expressible in the Spec� language; in particular, we include a
precondition that says that �
���
��� is below all references in the Spec � program:
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�	����	� ���� � ���,� �

� ��������� � ���� � ��������,� � ���,� � �

��	����	 ���� *����
� ����	 ����	� �

���� ����,�� � ���� ������ �
/* use the forks to eat . . . */

� � �
�

�

Figure 17. A program that runs 3 dining philosophers.


���	���	 *������� Æ*����,�� � �	�� �	����� � � �
�	����	� �� 
� �	� �

 �� ���� � �����
� �� 
�	��� � &
��-������
���
��� � 
� � �

� � �

We omit here the constant *�������, its associated type axioms, and the translation of
the constructor.

Translation The translation of the expression ��������� is:

�� ������������� �
�� ������������� � �
���
���
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Since the lock statement is a structured block statement, the value of ���������
on exit from a method is the same as it was on entry. However, ��������� can have
different values during the execution of a method. We therefore put ��������� into the
modifies and ensures clause of every procedure in our translation (cf. page 41):

��$
� �� ����� �
�����	��� �
���
��� �
	����	� �
���
��� � �����
���
���� �
	����	� �� 
� �	� � � ��
�	 � � � � ��
� � � � �������
� � � �

We replace the translation of the previous ��
�	 statement (cf. page 55) with the
following translation of the new ��
�	 statement:

�� ����
�	 && � 
 � �� � �� �

��	�� 
 �� ���� � ��
����,���� � � ��� �

��	�� 
��
� �,���� � �

��	����
� ��( � � �����
� �
for each expression “�” in && do

for each expression “�” in �� do

��	�� � � ���� � � � ���� � &
��-������ � �� �

for each expression “�” in && do

����	 � � ���� � &
��-������ � 
� �

for each expression “�” in �� do

����	 � � ���� � &
��-�����
� �� �

��
� �,���� � �� ���	 �
��
����,���� � �� ����

Finally, we change the translation of the lock statement to check for possible dead-
lock violations and to update �
���
��� (cf. page 55):

�� ������ �
� � ��� �

��	�� 
 �� ���� � ��
� �,���� � � &
��-������
���
��� � 
� �
� �
� 
��+���� ��	� ��
�	�
�� �
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�
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����	 �������
��
��+������ �
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��� ����,���� � � ��� � 
��+����� � � � � ��� � � � � �
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��&
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��&
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��� �� �
���
��� �
�
���
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 � ��
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�� ��� ��� �
��
����,���� � �� ���� � �
���
��� �� 
��&
���
���

�

Note, since we now deal with deadlocks, we have removed the assumption


����	��
����,���� � �� ��� �
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which previously was part of our translation of the lock statement—the checked condi-
tion ��������� � 
 implies that the thread does not already hold 
.

4.3. Summary

In this section, we have extended the single-threaded methodology to multi-threaded
code. The basic idea is to limit the interaction between threads, so that reasoning can
proceed mostly as for single-threaded code, except at certain synchronization points. We
have shown how to maintain objects invariants in a multi-threaded setting. A single lock
statement acquires exclusive access to all objects in an ownership tree. A program can
decide the degree of sharing in a program by deciding to make fields either �	
 fields
or ��
�	� fields. We prevent deadlocks by allowing a program to incrementally and
locally specify a global partial order among the objects in the program. Locking objects
in ascending order then prevents deadlocks.

5. History and Acknowledgments

Program-Verifier Architecture Roots of the program-verifier architecture we have de-
scribed trace back to ESC/Modula-3 [15], a project spearheaded by Greg Nelson. The
ESC/Modula-3 checker translated Modula-3 programs into a form of Dijkstra’s guarded
commands [19,68], from which it generated verification conditions. The ESC/Java
checker [25] refined this approach by more clearly defining two forms of an intermediate
language [56]. The BoogiePL intermediate language [12] took two more steps by adding
a mathematical part to the language, which previously had been passed directly to the
theorem prover, and by adding a parser for the language, which for debugging the verifier
has been shown to have great value [3].

Filliâtre has also proposed a generation of verification conditions via an intermediate
language based on type theory [21]. This has served as the basis for the tool and inter-
mediate verification language Why [22]. Why is being used as the intermediate language
for the Java verifier Krakatoa [60] and the C verifier Caduceus [23].

Rather than using VC generation and first-order logic, a program verifier can encode
more of the program into the formulas passed to the theorem prover. This approach is
followed, for example, by the KeY tool [1] for JavaCard programs, which uses dynamic
logic, and the LOOP [38,61] and Jive [65] verifiers for Java, which use extensions of
Hoare logic.

Translation of Languages and Language Features We have shown a translation of core
object-oriented language features. The use of updatable maps (arrays) to model refer-
ences goes back to Burstall [9]. Modeling the heap as a 2-dimensional array, as done by
Poetzsch-Heffter [71], has the advantage that one can quantify over all field names, as
we have done extensively.

Leino’s thesis [46] gave a translation of object-oriented source-language features,
together with constructs like exceptions, records, and deallocation, into guarded com-
mands, along the lines of what was done in ESC/Modula-3. Ecstatic [47] is a core object-
oriented language with a weakest-precondition semantics, and includes axioms that en-
code types and allocation. The ESC/Java translation of annotated Java into guarded com-
mands and axioms employed a number of encoding tricks aimed at improving the per-
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formance of the underlying theorem prover [55]. Boogie uses similar encodings, but in
this paper we have avoided such “optimizations” in order to make the presentation more
straightforward.

Efficient Formulas We defined the semantics of BoogiePL� commands in terms of clas-
sical weakest preconditions. However, such a definition gives rise to a lot of redundancy
that can lead a theorem prover to unnecessary case splits, which easily can turn into un-
bearable performance [26]. ESC/Modula-3 and ESC/Java used techniques for reducing
this redundancy, which is important for a practical checker [26,49].

Unlike the structured commands of BoogiePL� that we used in this paper, BoogiePL
has unstructured goto commands. Boogie uses a redundancy-reducing technique based
on weakest preconditions to define the semantics of these unstructured commands [5].

Quantifiers Another important consideration in the design of a practical automatic ver-
ifier is how to give the theorem prover directives of how to instantiate universally quan-
tified expressions. The SMT solver Simplify [13] calls these directives triggers, and get-
ting good results from Simplify requires good use of triggers.

Specification, Abstraction, and Methodology The first sound modular verification
methodology for a significant subset of a modern object-oriented language was given
by Müller in his thesis [64]. The particular methodology we presented for using ob-
ject invariants in single-threaded [4] and multi-threaded [37,39] programs is based on
joint work with our Spec� colleagues. There are extensions of this methodology to
visibility-based invariants [50,7,63], static class invariants [51], iterators [35], pure meth-
ods [10,36], model fields [52], and subject-observers structures [57].

Early static multi-threading tool include Sema [43] for race conditions and War-
lock [74] for deadlocks. Our approach has roots in ESC/Modula-3 [15], which used veri-
fication technology to check that shared variables were accessed only when certain locks
were held, and that locks were acquired in ascending order. ESC/Modula-3 left it to the
programmer to check various things, for example that all shared variables were marked
as such and that the specified locking order really was a partial order, and it was not so
easy to specify the locking order for individual objects. The ESC/Modula-3 approach
was also supported by ESC/Java [25]. The dynamic race detection tool Eraser also en-
forces a methodology in which each shared variable is protected by some locks [73].
Some locking issues can also be checked with type systems [24,8]. Recently, an approach
based on atomicity specifications has been proposed for Java [72].

We made use of committed objects to get abstraction in modifies clauses. Other ap-
proaches have used abstraction dependencies [46,53,64], data groups [48,54], separation
logic [70], and dynamic frames [40].

We know the technique of changing the specification for method overrides from the
work on Fugue [11], which called such specifications sliding. We justified the soundness
of dereferencing shared fields in implicit object invariants on the grounds that �,����
is monotonic, which is an idea further explored for type states [20]. The technique of
capturing parameters, which we specify by a modifies clause that mentions ��( and/or
�,���� , was used in the work on ESC/Modula-3 [14].
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6. Conclusion

Program verification, although as old as computer science [27], is still one of its grand
challenges [33].

This paper developed a verifying compiler for a multi-threaded object-oriented sub-
set of Spec� [6], here called Spec�. Correctness of Spec� programs is specified by types,
method specifications, object invariants, field modifiers, ghost state, and new statements.
The developed compiler (defined in Sections 2, 3, and 4) takes as input a Spec � program,
and generates, via an intermediate language called BoogiePL � (defined in Section 1),
first-order verification conditions, which can be processed by an SMT solver. If its proof
attempt succeeds, then the program is correct and can be run. If it fails, advice is sought
from the user. Experience shows that this is a viable approach. By now, many thousands
of Spec� lines have been verified, although often only with shallow properties like free-
dom from raised exceptions.

This paper addresses many challenges of verifying modern multi-threaded object-
oriented languages. We have shown how to deal with reentrancy, aliasing, inheritance,
representation abstraction, method framing, and multi-threading. We have also shown
how to engineer a basic verifier by introducing an intermediate verification language.
Much remains to be done: for instance, we have to learn how to verify more object-
oriented design patterns [28], different kinds of concurrent code [44], and we have to
learn how to verify abstractions [34].

We hope that this paper guides students toward understanding program verification,
and we encourage them to build their own verifier. Program verification is a rich and
rewarding research field.
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