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Preface

We examine modal and temporal logics for processes. In section 1 we intro-
duce concurrent processes as terms of an algebraic language comprising a few
basic operators, as developed by Milner, Hoare and others. Their behaviours
are described using transitions. Families of transitions can be arranged as la-
belled graphs, concrete summaries of process behaviour. Various combinations
of processes are reviewed.

In section 2 modal logic is introduced for describing the capabilities of pro-
cesses. An important discussion is when two processes may be deemed, for all
practical purposes, to have the same behaviour. We discuss bisimulation equi-
valence as the discriminating power of modal logic is tied to it. This equivalence
is initially presented in terms of games.

More generally practitioners have found it useful to be able to express tem-
poral properties (such as liveness and safety) of concurrent systems. A logic
expressing temporal notions provides a framework for the precise formalization
of such specifications. Formulas of the modal logic are not rich enough to express
such temporal properties. So extra operators, extremal fixed points, are added
in section 3. The result is a very expressive temporal logic.

The modal and temporal logics provide a repository of useful properties.
However it is also very important to be able to verify that an agent has or lacks
a particular property. This is the topic of section 4. First we show that property
checking can be understood in terms of game playing. We then present sound and
complete tableau proof systems for proving temporal properties of processes. The
proof method is illustrated on several examples. Finally, concluding comments
are contained in section 5.
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1 Processes

Process theory introduces processes as terms of an algebraic language comprising
a few basic operators. Transitions of the form £ —— F', that process £ may
become F' by performing the action a, feature prominently, underpinning the
behavioural meaning of a process. Structured rules guide their derivation in the
sense that the transitions of a compound process are determined by those of its
components. Families of transitions can be arranged as labelled graphs, concrete
summaries of the behaviour of processes. Here we review various combinations
of processes and their resulting behaviour as determined by the transition rules.

1.1 First examples

A simple example of a process (courtesy of Hoare [40]) is a clock that perpetually

ticks, CI 4T tick.Cl We adopt the usual convention that names of actions such
as tick are in lower case whereas names of processes have an initial capital
letter. The defining expression for CI invokes a prefix operator . which forms
the process a.E from the action @ and the process E. The facility for defining

processes d:‘af, relating a process name with a process expression, is recursive as
both occurrences of C! name the same process. The behaviour of Cl is very
elementary: it can only perform the action tick and in so doing becomes Cl
again. This is deducible from the rules for transitions.

First is the axiom for the prefix operator when a is an action and F a process:

R() aFE-%FE

Its meaning is that process a.E may perform (respond to, participate in, or
accept) the action a and evolve into the process . An instance is the transition
tick.Cl 2% CI. Next is the transition rule for déf, which is presented as a goal

directed inference rule:

efy P——F 4
R(E) ——— PED
r—Fr

Provided that £ may become F' by performing a and that the side condition
P Y B is fulfilled, it follows that P —*= F.

Using these two rules we can show Cl Yk o

tick
CO—Cl e i

tick

tick.Cl — Cl

This proof of Cl Yk oris presented with the desired conclusion as antecedent

which follows from the axiom instance beneath it via an application of R(d:ef).

The behaviour of Cl can be visually summarized as in figure 1. The ingredi-
ents of this graph (called a labelled transition system) are process terms and



Cl

tick

Fig. 1. The transition graph for Cl

directed labelled arcs between them. Each vertex is a process term, and one of
them is Cl which can be thought of as the root. All the possible transitions from
each vertex, those that are provable from the rules for transitions, are represen-
ted.

A second example, a very simple vending machine, is defined in figure 2.
Here + (which has wider scope than .) is the choice operator from Milner’s

Ven = 2p. Veny + 1p. Veny
Veny S big.collecty. Ven

Ven; def little.collect;. Ven
Fig.2. A vending machine

CCS, Calculus of Communicating Systems, [52]. Initially Ven may accept a 2p
or 1p coin; then a button, big or 1ittle, may be depressed depending on which
coin was deposited; finally, after an item is collected the process reverts to its
initial state Ven. Transition rules for +, justifying this description of Ven, are:

Ei+E, % F Ei+E, % F
B = F By 2 F

R(+)

The proof of the transition Ven 22, Veny is':

2p
Ven — Veny

2p. Veny + 1p. Veny 2, Veny

2
2p. Veny N Veny

The final transition is an axiom instance; an application of the first R(+) rule
to it yields the intermediate transition; and the goal therefore follows using the

rule R(dZEf). The transition graph for Ven 1is presented in figure 3.

1 In proofs of transitions we usually omit explicit mention of side conditions in the

application of a rule such as R(déf).



2p xp

col I ect ) en, Ven col I ect,
big little

col | ectb.Ven col | ect, .Ven

Fig. 3. The transition graph for Ven

A transition £ —— F can be viewed as an assertion which is derivable from
the rules for transitions. To find out what transitions are possible from FE it
suffices to examine its main combinator and the possible transitions of its com-
ponents. There is an analogy with rules for expression evaluation: for instance,
to evaluate (3 x 2) + 4 it suffices to evaluate the components 3 x 2 and 4, and
then sum their values. Such families of rules give rise to a structured operational
semantics in the style of [59]. However, whereas the essence of an expression is
to be evaluated, the essence of a process is to act.

Families of processes can be defined using indexing. A simple case is the
set of counters {Ct#; : i € N} of figure 4. The counter Ct3 can increase to

Cto def up. Ct1 + round. Cto
Ctiya o up. Ctiyo + down. Ct;

Fig.4. A family of counters

Cty by performing up, or decrease to Cty by performing down. Each member
Ct; determines the same transition graph which contains an infinite number of
different vertices: such graphs are infinite state in contrast to the finite state
graphs of figures 1 and 3.

The operator + is frequently extended to indexed families Y {E; : i € I}
where 7 is a set of indices.

R(Z) E{EZ':Z'EI}—>F .

a Jel
E; — F

A special case is when the indexing set I is empty. By the rule R(>") this process
has no transitions as the subgoal can never be fulfilled. In CCS this nil process
is abbreviated to 0 (and to STOP in Hoare’s CSP, Communicating Sequential
Processes, [40]). Thus tick.0 can only do a single tick before terminating.
Actions can be viewed as ports or channels, means by which processes can
interact. It is then also important to consider the passage of data between pro-
cesses along these channels or through these ports. In CCS input of data at a



port named a is represented by the prefix a(z).E where a(z) binds free occur-
rences of z in E. (In CSP a(z) is written a?2.) Now a no longer names a single
action but instead represents the set {a(v) : v € D} where D is the appropriate
family of data values. The transition axiom for this prefix input form is:

R(in) a(z).E " E{v/z} veD

where E{v/xz} is the process term which is the result of replacing all free occur-
rences of z in £ with v%. Output at a port named a is represented in CCS by
the prefix @(e).E where e is a data expression. The overbar ~ symbolizes output
at the named port. (In CSP @(e) is written ale.) The transition rule for output
depends on extra machinery for expression evaluation. Assume that Val(e) is the
data value in D (if there is one) to which e evaluates:

R(out) a(e).E "L E Val(e) = v

The asymmetry between input and output is illustrated in the following
process that copies a value from in and then sends it through out:

Cop def in(z).out(z).Cop
For any v € D the transition Cop () out(v).Cop is derived as follows:

Cop () out(v).Cop

in(z).out(z).Cop () out(v).Cop

The subgoal is an instance of R(in), as (out(z).Cop){v/x} is out(v).Cop. This

latter process has only one possible transition, out(v).Cop 2t (v) Cop, an instance

of R(out) as we assume that Val(v) is v. Whenever Cop inputs a value at in it
immediately disgorges it through out. The size of the transition graph for Cop
depends on the size of the data domain D and is finite when D is a finite set.

Input actions and indexing can be mingled, as in the following description of
a family of registers where both ¢ and z have type N:

Reg; o read(i).Reg;, + write(z).Reg,

Reg,; can output the value ¢ at the port read, or instead it can be updated by
being written to at write.

We shall implicitly assume different expression types, such as boolean expres-
sions. For instance when 7 is an integer, Val(even(i)) = true if ¢ is even and is
false otherwise. This allows us to use conditionals in the definition of a process,
as exemplified by S which sieves numbers:

? a(z).E can be viewed as an abbreviation for Y {av.E{v/z} : v € D}, writing a.,
instead of a(v).



g &t in(2).if even(z) then out,.(z).S else out,(z).S

Below are the transition rules for this conditional.

if b then F; else Fy — E'

R(if1) s
1

Val(b) = true

if b then E; else £y > E'

R Val(b) = false
2 —_—

R(if2)

Example 1 Consider the following family of processes for ¢ > 1:

T(i) € if even(i) then out(i).T(i/2) else out(i).T((3i + 1)/2)

T(5) performs the transition sequence T'(5) 22t (5) T(8) 22t (§) T(4) 22t (4) T(2),
and then cycles through the transitions 7'(2) 22t (2) T(1) (1) T(2). O

1.2 Concurrent interaction

A compelling feature of process theory is its modelling of concurrent interaction.
A prevalent approach is to appeal to handshake communication as primitive.
At any one time only two processes may communicate at a port or along a
channel. In CCS the resultant communication is a completed internal action.
Each incomplete, or observable, action a has a partner @, its co-action. Moreover
the action @ is @ which means that a is also the co-action of @. The partner of
a parametrized action in(v) is in(v). Simultaneously performing an action and
its co-action produces the internal action 7 which is a complete action and so
does not have a partner.

Concurrent composition of E and F' is expressed as the process E | F. The
crucial transition rule for | which conveys communication is:

E|F - E|F

R(] com) —
E B F R

Consider a potential user of the copier Cop of the previous section who first
writes a file before sending it through the port in:

User & write(z).Usery,  Usery def in(z). User

As soon as User has written the file v it becomes the process User, which can
communicate with Cop. Rule R(| com) licenses the following proof®:

? We assume that | has greater scope than the other process operators: the process
out(v).Cop | User is therefore the parallel composition of out(v).Cop and User.



Cop | User, — out(v).Cop | User
n(v) in(v)

Cop () out(v).Cop User, — User

in(z).out(z).Cop 2l out(v).Cop in(v).User =) ser

Through this communication the value v is sent from the user to the copier.
Data is thereby passed from one process to another. When the actions a and @
do not involve values, the resulting communication is a synchronization.

Various users can share the copying resource, Cop | (Usery1 | Userys) admits
two users, but only one at a time is allowed to employ it. So other transition rules
for | are needed, permitting components to proceed without communicating.
These rules are:

E|\lFXE|F E|FXE|F
E 2 E F 2 F

R(])

In the first of these rules the process F' does not contribute to the action a which
FE performs. An example derivation is:

Cop | (Useryy | Userys) N out(vl).Cop | (User | Userys)

Cop iaCvl) out(vl).Cop Useryy | Userys (1) User | Userys
in(z).out(z).Cop () out(vl).Cop Usery i_n(—vp User
in(vl)

in(vl). User Y User

The goal transition reflects a communication between Cop and User,;, and
so Userys does not contribute to it. The process Cop | (Usery; | Userys) is
not forced to engage in communication, it may instead perform an input in(v)
action or an output action in(v1) or in(v2).

The behaviour of the users sharing the copier is not affected by order of
parallel subcomponents or by placement of brackets. (Cop | Usery1) | Userys and
Useryy | (Cop | Userys) have the same capabilities as Cop | (Useryy | Userys).
These three process expressions have isomorphic transition graphs, and therefore
in the sequel we omit brackets between multiple concurrent processes™.

The parallel operator is expressively powerful. It can be used to describe
infinite state systems without invoking infinite indices or value spaces. A simple

example is the counter Cnt given by Cnt def up.(Cnt | down.0). It can perform
up and become Cnt | down.0 which in turn can also perform up and thereby
becomes Cnt | down.0 | down.0, and so on.

Figure 5 offers an alternative pictorial representation of the copier Cop and
its user process User. Such diagrams are called flow graphs by Milner [52] (and
should be distinguished from transition graphs). A flow graph summarizes the
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Fig. 5. The flow graphs of User, Cop, Cop | User and Cop | User | User

potential movement of information flowing into and out of ports, and also ex-
hibits the ports through which a process is in principle willing to communicate.
In the case of User the incoming arrow to the port labelled write represents
input whereas the outgoing arrow from in symbolizes output. The flow graph
for Cop | User has the crucial feature that there is a potential linkage between
the output port in of User and its input in Cop permitting information to cir-
culate from User to Cop when communication takes place. However this port
is still available for other users: both users in Cop | User | User are able to
communicate, at different times, with Cop.

Consider now the situation where a user has private access to a copier. This is
modelled using an abstraction or encapsulation operator which conceals ports or
channels. In CCS there is a restriction operator \J where J ranges over families
of incomplete actions (thereby excluding 7). Let K be the set {in(v) : v € D}
where D is the space of values that could be accessed through in. In the process
(Cop | User)\K the port in is inaccessible from the outside. Its flow graph is
pictured in figure 6 where the linkage without names at the ports represents that
they are concealed from other users. This flow graph can therefore be simplified
as in the second diagram of figure 6.

The visual effect of \J on flow graphs is underpinned by its transition rule,
where the set J is {@ : a € J}.

* Section 2.4 provides further justification for this.
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The behaviour of E\J is part of that of E. The presence of \K prevents Cop
in (Cop | User)\K from ever doing an in transition except in the context of a
communication with User. This therefore enforces communication between these
two components. The only available transition after an initial write transition,

(Cop | User)\K write() (Cop | Usery)\K, is the communication whose proof is:

(Cop | Usery)\K SN (out(v).Cop | User)\K

Cop | User, — out(v).Cop | User

Cop () out(v).Cop User, () User

in(z).out(z).Cop ) out(v).Cop 1in(v).User 20) ser

The second user in (Cop | User)\K | User has no access to the copier. As the
operator \J is intended to conceal ports, we shall usually abbreviate any set of
actions of the form {a(v) : v € D} within a restriction to {a}: for instance the
restriction \ K above is more succinctly expressed as \{in}.

Process descriptions can become quite large, especially when they consist of
multiple components in parallel. So we shall employ abbreviations of process
expressions using the relation = where P = F' means that P abbreviates F'.

Example 1 The mesh of abstraction and concurrency is further revealed in the
following finite state example (without data) of a level crossing of figure 7 from
[17] consisting of three components. The actions car and train represent the
approach of a car and a train, up is the gates opening for the car, ccross is
the car crossing, down closes the gates, green is the receipt of a green signal
by the train, tcross is the train crossing, and red automatically sets the light
red. Unlike most crossings it keeps the barriers down except when a car actually




def p——
Road = car.up.ccross.down. Road

) def . — .
Rail = train.green.tcross.red.Rail

Signal def green.red.Signal 4 up.down. Signal

Crossing = (Road | Rail | Signal)\{green, red, up, down}
Fig.7. A level crossing

approaches and tries to cross. The flow graphs of the components and the overall
system are depicted in figure 8, as is its transition graph. g

An important arena for the use of process descriptions is modelling protocols
[58]. An example is Protocol of figure 9 taken from [69] which models a simple
communications protocol that allows a message to be lost during transmission.
Its flow graph is the same as that of Cop earlier, and the size of its transition
graph depends on the space of messages. The sender transmits any message it
receives at the port in to the medium. In turn the medium may transmit the
message to the receiver, or instead the message may be lost, an action modelled
as the silent 7 action, in which case the medium sends a timeout signal to the
sender and the message is retransmitted. On receiving a message the receiver
outputs it at the port out and then sends an acknowledgement directly to the
sender (which we assume cannot be lost). Having received the acknowledgement,
the sender may again receive a message at port in.

Although the flow graphs for Protocol and for Cop are the same, their levels of
detail are very different. It turns out that these two processes are equivalent in the
sense defined in section 2.6. As process descriptions they are very different. Cop
is close to a specification, as its desired behaviour is given merely in terms of what
it does, or how it may react. In contrast Protocol is closer to an implementation
as it 1s defined in terms of how it is built from simpler components.

Example 2 The slot machine in figure 10 is an infinite state system (from
[17]). TIts flow graph is also depicted there. A coin is input (the action slot)
and then after some silent activity either a loss is output or a winning sum of
money. It consists of three components; 7O which handles the taking and paying
out of money, B, a bank holding n pounds, and D the wheel-spinning decision
component. O

1.3 Observable transitions

A natural extension of the transition relations —— is to finite length sequences
of actions or traces aj ...a,. Assume that w ranges over such sequences (with ¢
as the empty trace). The notation . F represents that £ may perform the
trace w and become F'. The next transition rule captures this generalization:
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K = {green,red, up, down}

Eo = Crossing

E1 = (up.ccross.down. Road | Rail | Signal)\ K

E> = (Road|greentcross.red. Rail | Signal)\ K

E; = (up.ccross.down. Road | green.tcross.red. Rail | Signal)\ K
E, = (ccross.down. Road | Rail | down. Signal)\ K

E; = (Road|tcross.red. Rail | red. Signal)\ K

E¢ = (ccross.down. Road | green.tcross.red. Rail | down. Signal)\ K
E; = (up.ccross.down. Road|tcross.red. Rail | red. Signal)\ K

Es = (down.Road | Rail | down. Signal)\ K

Ey = (Road |red. Rail | red. Signal)\ K

E1o = (down. Road | green.tcross.red. Rail | down. Signal)\ K
E11 = (up.ccross.down. Road | red. Rail | red. Signal)\ K

Fig. 8. Flow graphs of the crossing and its components, and its transition graph



Sender & in(z).5m(z).Send1(z)
Send1(z) def ms.Sm(z).Send(z) + ok.Sender
Medium = sm(y). Med1(y)

Med1(y) def mr(y). Medium + r.ms. Medium

Receiver & mr(z).out(z).ok. Receiver

Protocol = (Sender | Medium | Receiver)\{sm, ms, mr, ok}
Fig.9. A simple protocol

0 = slot.bank.(lost.loss. /O + release(y).win(y).70)
B, < bankmax(n + 1).left(y).B,
D Y nax(z).(Tost.Teft(z).D + Y {Telease(y).Teft(z —y).D : 1<y < z})

SM, = (I0]| B, | D)\{bank, max, left, release}

| oss
sl ot =
_— S\A
" B ——
win
Fig.10. A slot machine
EXF

R(tr) FE LN /)

w

FEXFE B F

For instance, the crossing of figure 7 performs the cycle Crossing — Crossing,
when w is trainTtcrossT.

There is an important difference between the completed internal 7 action and
incomplete actions. An incomplete action is observable in the sense that it can
be interacted with in a parallel context. Assume that £ may at some time per-
form the action ok, and that F is a resource. Within the process (F | ok.F)\{ok}
accessibility to this resource is triggered only when E performs ok. Here obser-
vation of ok is the same as the release of the resource. The silent action 7 can
not be observed in this fashion.

Consequently an important abstraction of the behaviour of processes is away

from silent activity. Consider a slightly different copier C' def in(z).out(z).ok.C,



and a user U, defined as write(z).in(z).ok.U, who writes a file before send-
ing it through in and then waits for an acknowledgement. The behaviour of
(C|U)\{in, ok} is very similar to that of Ucop ot write(z).out(z).Ucop. The
only difference in their capabilities is internal activity. Both are initially only able
to perform a write action. But afterwards Ucop outputs immediately whereas
the other process must first perform a communication before outputing and then
T again before a second write can happen. When abstracting from silent actions
this difference disappears: outwardly both processes repeatedly write and output.
Therefore we now define another family of transition relations between processes
which epitomizes observable behaviour.

Given a trace w the subsequence of w restricted to the set of actions J,
denoted by w [ J, is the remainder of w when actions outside of J are erased.
For instance (trainTtcross) | {tcross} = tcross, and 77 | {tcross} = ¢.
Associated with any trace w is its observable trace, the subsequence w [ @ when
O is a universal set of observable actions (containing at least all the actions
mentioned in this work apart from 7). For example the observable trace derived
from trainrtcross T is traintcross. Observable traces are either empty or
built from observable actions. Consequently we can introduce the notion that
E may perform the observable trace w and evolve into F': we use the standard
notation £ == F to represent this. A transition rule for such traces utilizes

R(tr) and [:

E=TF
R(Tr) ? u=wlO
F—F

Observable traces can also be built from their observable components. The

rain tgross

extended observable transition Crossing t Crossing is the result of glu-

tcross

ing together the two transitions Crossing 2 Foand E =S Crossing when
the intermediate state is either E3 or E5 of figure 8. Following [52] we therefore
define a new family of transition relations which underpin observable traces. A
label in this family is either the empty sequence € or an observable action a:

€

R(=) E=FE

E=F
E-EB B =F

R(=%) E=F
E=FE E SF F =F

The observable behaviour of a process can also be visually encapsulated as a
graph. As in section 1.1 the ingredients of this graph are process terms related by
directed labelled arcs. Each arc is either = or == where a is observable. Con-
sequently there are two behaviour graphs associated with any process. Although
both graphs contain the same vertices, they differ in their labelled arcs. Ob-
servable graphs are more complex than their counterparts built from the single



arrow transitions. However the abundance of arcs may result in redundant ver-
tices, for when minimized with respect to notions of observable equivalence, the
graphs may be dramatically simplified as their vertices are fused. In this way
the observable transitions of a process offer an abstraction from its behaviour.

1.4 Renaming and linking

The processes Cop and User are essentially one place buffers, taking in a value

and later expelling it. Assume that B is a canonical buffer, B def i(z).o(z).B.
Cop is the process B when port i is in and o is out and User is B when 1 is
write and o is in. Relabelling of ports or actions can be made explicit, as in
CCS with a renaming combinator.

The crux of renaming is a function mapping actions into actions. To ensure
pleasant algebraic properties (see section 2.7) a renaming function f is subject
to a few restrictions. First it should respect complements: for any observable a
the actions f(a) and f(@) are co-actions. Second f should also preserve values
passing between ports, f(a(v)) is an action b(v) with the same value, and for any
other value w the action f(a(w)) is b(w). Finally it should conserve the silent
action, f(7) = 7. Associated with any function f obeying these conditions is
the renaming operator [f] which when applied to a process E is written as F[f],
and is the process ' whose actions are relabelled according to f. Following [52]
a renaming function f is usually abbreviated to its essential part: when the q;
are distinct observable actions b1/aq,. .., b,/a, represents the function f which
renames a; to b;, and leaves any other action ¢ unchanged. For instance Cop
abbreviates the process B[in/i,out/o], as we maintain the convention that in
stands for the family {in(v) : v € D} and i for {i(v) : v € D}, and so in/i
symbolizes the function which maps i(v) to in(v) for each v.

The transition rule for renaming is:

R(Lf) w a = J(b)

which is used in the derivations of the following pair of transitions.

out(v)

Blin/i, out/o] () (o(v).B)[in/i, out/o] "— B[in/i,out/o]

An important feature of processes is that they can be built from simpler
components. Consider for instance how to construct an n-place buffer, when
n > 1, following [52], by linking together n instances of B in parallel. The
flow graph of n copies of B is pictured in figure 11. For this to become an n-
place buffer we need to link and then internalize the contiguous © and i ports.
Renaming permits linking as the following variants of B show:

By = Blo1/o] Bjy1 = Bloj/i,0j41/0] 1<j<n—-1 B, = Blo,_1/1i]



i 0 i 0 i 0
%% %%...9%
! 01 01 (o] On- (o]
2
ese —ese- ese-

Fig.11. Flow graph of n instances of B, and By | ... | By

The flow graph of By | ... | B, is also depicted in figure 11, and contains
the intended links. The n-place buffer is the result of internalizing these links,
(Bl | N | Bn)\{ol, . ~;°n—1}-

A more involved example from [52] is the construction of a scheduler from
small cycling components. Assume n tasks when n > 1, and that action q;
initiates the ith task whereas b; signals its completion. The scheduler timetables
the order of task initiation, ensuring that the sequence of actions a;...a, is
performed cyclically starting with a;. The tasks may terminate in any order,
but a task can not be restarted until its previous performance has finished. So
the scheduler must guarantee that the actions a; and b; happen alternately for
each 1.

Let Cy' be a cycler of length four, Cy’ def a.c.b.d.Cy', whose flow graph is
illustrated in figure 12. In this case the flow graph is very close to the transition
graph, and so we have circled the a label to indicate that it is initially active. A
first attempt at building the required scheduler is as a ring of Cy’ cyclers.

Cyy = Cy'lar/a, c1/e, b1 /b, /d]
Cy; = (d.Cy"[a;/a,e;/e,bi/b,Ei_1/d] 1<i<n

When n is four the flow graph of the process Cy | Cyh | Cysy | Cy)y with initial
states marked is depicted in figure 12. Next the ¢; actions are internalized. Let
Sched’, abbreviate the process (Cy} | Cysy | Cys | Cyy)\{e1,...,ca}. The flow
graph shows how the tasks must be initiated cyclically (when the ¢; actions are
internalized): for example a3 can only happen once a; and then as have both
happened. Moreover no task can be reinitiated until its previous performance
has terminated: action a3 cannot recur until b3 has happened. However Sched’
does not permit all possible acceptable behaviour. A simple case is that action
b4 depends on b1, so task four can not terminate before the initial task.

The solution in [52] to this problem is to redefine the cycler as follows,

Cy = a.c.(b.d.Cy+ d.b.Cy), and to use the same renaming functions. Let Cy,

for 1 < i < n be the process (d.Cy)[a;/a,ci/c,b;/b,G_1/d], and let Cy; be
Cylai/a,c1/e,b1/b,¢,/d]. The required scheduler, Sched,,, is the following pro-
cess, (Cyy | ... ] Cy)\{e1,...,ent



Fig. 12. Flow graph of Cy’ and Cy; | Cy, | Cys | Cy,

1.5 More combinations of processes

In previous sections we have emphasized the process combinators of CCS. There
is a variety of process calculi dedicated to precise modelling of systems. Besides
CCS and CSP there is ACP due to Bergstra and Klop [11, 6], Hennessy’s EPL
[36], MEIJE defined by Austry, Boudol and de Simone [4, 61], Milner’s SCCS
[51], and Winskel’s general process algebra [72]. Although the behavioural mean-
ing of all the operators of these calculi can be presented using inference rules,
their conception reflects different concerns, see [7]. ACP is primarily algebraic,
highlighting equations®. CSP was devised with a distinguished model in mind,
the failures model®, and MEIJE was introduced as a very expressive calculus, ini-
tiating general results about families of rules that can be used to define process
operators [35]. The general process algebra in [72] has roots in category the-
ory. Moreover users of the process notation can introduce their own operators
according to the application at hand.

Numerous parallel operators are proposed within the calculi mentioned above.
Their transition rules are of two kinds. First, where x is parallel, is a synchron-
ization rule:

° See section 2.7.
6 See section 2.2 for the notion of failure.
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Here ab is the concurrent product of the component actions a and b, and . .. may
be filled in with a side condition: in the case of | of section 1.2 the actions a and
b must be co-actions, and their concurrent product is the silent action. Other
rules permit components to act alone.

ExF -2 E xF ExF % B xF'
B X g P4 g

In the case of | there are no side conditions when applying these rules. This gen-
eral format covers a variety of parallel operators. At one extreme is the case when
x is a synchronous parallel (as in SCCS), when only the synchronization rule
applies thereby forcing maximal concurrent interaction. At the other extreme
is a pure interleaving operator when the synchronization rule never applies. In
between, are the parallel operators of ACP, CCS, CSP and MEIJE.

A different conception of synchronization underlies the parallel operator of
CSP (when data is not passed). Synchronization is sharing the same action.
Actions now do not have partner co-actions as multiple parallel processes may
synchronize. Each process instance in CSP has an associated alphabet consisting
of those actions in which it is willing to engage. Two processes must synchronize
on common actions, belonging to both component alphabets. An alternative
presentation which does not require alphabets is to introduce a family of binary
parallel operators || indexed by a set K of actions which have to be shared.
Rules for ||g are:

E||gF % E'||g F'

B -X g FLF/GEA

E||xkF - F'||xF . EB||gF % E|xF'’
ag K T a

-2 B J AR

¢K

The operator ||x enforces synchronization. In CCS enforced synchronization
is achieved using | and the restriction operator \ K. Restriction also provides
a mechanism for abstracting from observable actions by making them silent.
Similarly there is a useful abstraction, or hiding, operator in CSP which we
represent as \\ K . Its rules are

E\\K - F\\K ¢ K E\\K - F\\K
a g K a
E->F E->F

€K

There is a variety of extensions to these basic calculi for modelling real time
phenomena such as timeouts expressed using either action duration or delay
intervals between actions [55, 54], priorities among actions or among processes



[24, 21], and the description of stochastic behaviour using probabilistic instead
of non-deterministic choice [46]. These extensions are useful for modelling hybrid
systems which involve a mixture of discrete and continuous, and can be found
in chemical plants, and manufacturing.

Processes can also be used to capture foundational models of computation
such as Turing machines, counter machines, or parallel random-access machines.
This remains true for the following restricted process language where P ranges
over process names, a over actions, and I over finite sets of indices:

Euz=P | Y {apl; :i€l} | By |Ey | E\{a}

A process is given as a finite family of definitions {P; def E; : 1<i<n} where
all the process names in each E; belong to the set { Py, ..., P,}. Although process
expressions such as the counter Ctg (figure 4) the register Reg (section 1.1) and
the slot machine SM (figure 10) are excluded because their definitions appeal
to value passing or infinite sets of indices, their observable behaviour can be
described within this restricted process language. Consider, for example, the
following finite reformulation [68] of the counter Ctg, the process Count:

Count = round.Count + up.(Count; | a.Count)\{a}
Count; < down.@.0 + up.(Countsy | b.Count;)\{b}
Counts < downb.0 + up.(Count; | a.County)\{a}

A two counter machine can simulate a Turing machine, and can be expressed
as a process of the form (Init | Fin | Count | Count’)\K, where Init captures
initialisation, Fin is the finite state control, and the other components are the two
counters. The general significance of this is unclear. First there is not a natural
formulation of functions within these process calculi, and in particular there is
not a simple account of lambda calculus. Second it is not known what the right
criteria are for assessing the expressive power of calculi which model concurrency.
Should there be a “canonical” process calculus? Is there a concurrent version of
the Church-Turing thesis for sequential programs? Some exciting work has been
progressing in this area. Two examples are interaction categories [1], and the
w-calculus [53].

2 Modalities and Capabilities

Various examples of processes have been presented, from a simple clock to a
sophisticated scheduler. In each case a process is a term drawn from a process
language built from a small number of operators. Behaviour is determined by
the transition rules for these process combinators. These rules may involve side
conditions relying on extra information, as is the case when data is involved.
The ingredients of a process description are combinators, predicates, and rules
which allow us to deduce transitional behaviour.



In this section we consider various abstractions from the behaviour of pro-
cesses. Already we have contrasted finite state from infinite state processes: the
size being determined by the behaviour graph generated from a process. We
have also distinguished observable transitions, marked by the thicker transition
arrows =, from their thinner counterparts. An important discussion surrounds
the question of when two processes may be deemed, for all practical purposes, to
have the same behaviour. Such an abstraction can be presented by defining an
appropriate equivalence relation between processes. A more abstract approach
is to examine behavioural properties, and to consider equivalence in terms of
having the same pertinent properties. Consequently we first define simple logics
which can capture process capabilities.

2.1 Hennessy-Milner logic

We now introduce a modal logic for describing local capabilities of processes.
Formulas are built from boolean connectives and modal operators [K] (“box
K”) and (K) (“diamond K”) where K is a set of actions:

G = tt | £f | Oy ADy | DV Dy | [K]D | (K)D

This modal logic slightly generalizes Hennessy-Milner logic [38, 39], as sets of
actions instead of single actions appear in the modalities.

For any modal formula @ we define when a process E has, or satisfies, the
property @, written E = @. If E fails to have the property @ we write F [~ &.
The satisfaction relation |= between processes and formulas is defined inductively
on the structure of formulas:

EEtt

E £ £f

EEony if EEdand E=W

EEovy ifEdor ER=W

EE[Kl® iffVFel{E :E-F andacK}. FE®
EE(K)Y ifdFe{p :E-SFE andacK}. Fl=®

The meanings of modalized formulas appeal to the transition behaviour of a
process. To reduce the number of brackets in modalities we write [a1, ..., ay]
and (ai,...,a,) instead of [{a1,...,an}] and ({a1,...,a,}).

The simple modal formula (tick)tt expresses a capability for performing
the action tick, £ | (tick)tt iff IF € {E' : E Bk B’} The clock Cl
from section 1.1 has this property. In contrast, [tick|ff expresses an inabilily
to perform tick, F | [tick]ff iff {E' : E AL E'} = 0. So Ven has this
property but Cl fails to have it. Such basic properties can be embedded within
modal operators and between boolean connectives. For instance F can perform

the trace aj ...a, just in case it has the corresponding property (ai1)...{a,)tt.



-
(

The formula [tick]({tick)tt A [tock|ff)’ expresses the property that after any
tick action it is possible to perform tick again but not possible to perform
tock.

[K]ff expresses an inability to initially perform an action in K. In the case
of the vending machine Ven a button can not be depressed (before money is
deposited), so Ven |= [big,1ittle]ff. Other interesting properties of Ven are:

— Ven |= [2p]([1ittle]ff A (big)tt): after 2p is deposited the little button
cannot be depressed whereas the big one can.

— Ven = [1p, 2p][1p, 2p]ff: after a coin is entrusted no other coin (2p or 1p)
may be deposited.

— Ven |= [1p, 2p][big, little](collect;, collect;)tt: after a coin is deposited
and a button is depressed, an item can be collected.

Verifying that Ven has these properties is undemanding. Their proofs merely
appeal to the inductive definition of the satisfaction relation between processes
and formulas. For instance Ven |= [1p,2p][ip, 2p]ff iff Veny |= [1p, 2p|ff and
Ven; |E [1p,2p|ff, and clearly both of these hold. Similarly establishing that
Ven lacks a property, such as (1p)(1p,big)tt, is equally routine. Notice that
it is not necessary to construct the transition graph of a process when showing
that it has, or fails to have, a property.

Actions in the modalities may contain values. For instance the register Regs
from section 1.1 has the property (read(5))tt A [{read(k) : k # 5}]£f.

Assume that A is a universal set of actions including 7: so A = O U {7}
where O is described in section 1.3. We let — K abbreviate the set A — K, and
within modalities we write —ay,...,a, for —{ay,...,a,}. Moreover we assume
that — abbreviates the set —{ (which is just .4). Consequently a process E has
the property [—]® when each F' in the set {£’' : E —— E’ and a € A} has the
feature @. The modal formula [—]ff expresses deadlock or termination.

Within this modal logic we can also express immediate necessity or inevitab-
tlity. The property that only a can be performed, that it must be the next action,
is given by the formula (—)tt A[—a]f£. The conjunct (—)tt affirms that some ac-
tion is possible while [—a]££ states that every action except a is impossible. After
2p is deposited Ven must perform big, and so Ven |= [2p]({(—)tt A [-big]ff).

2.2 More modal logics

Process activity is delineated by the two kinds of transition relation distinguished
by the thickness of their arrows — and —. The latter captures the perform-
ance of observable transitions as == permits silent activity before and after a
happens: the relation == was defined (see section 1.3) in terms of — and the
relation == indicating zero or more silent actions.

" We assume that A and V have wider scope than the modalities [K], (K), and that
brackets are introduced to resolve any further ambiguities as to the structure of a
formula: consequently, A is the main connective of the subformula (tick)ttA[tock|ff.



The modal logic of the previous section does not express observable capabil-
ities of processes as silent actions are not accorded a special status. To overcome
this it suffices to introduce two new modalities [ ] and {{ )):

EE[]® ffVFe{l : E==FE} FE®
EE()iffIFe{F : E=E}). FE®

These operators are not definable within the modal logic of the previous section.
Using them, supplementary modalities [K] and {(K)) are definable when K is a
subset of observable actions (.

[K]e E [1[K][]® (K)o E ( WE)( )

The derived meanings of these modalities appeal to the observable transition
relations = in the same way that their counterparts [K] and (K) appeal
to —. We write [a1,...,a,] and ((ay,...,a,)) instead of [{a1,...,a,}] and
(a, . an}).

The simple modal formula ((tick))tt expresses the observable capability for

performing the action tick while [tick] £f expresses an inability to tick after

any amount of internal activity. Both clocks CI' LT tick.CV + 7.0 and Cl def

tick.Cl have the property ((tick))tt but CI' may at any time silently stop
ticking, and therefore it also has the property {(tick)) [tick] £f.

Example 1 Crossing satisfies [car] [train] ({tcross)tt V ((ccross)tt), but
it fails to satisfy [car] [train] ({(tcross)tt A ((ccToss)tt). O

Modal formulas can also be used to express notions that are basic to the
theory of CSP [40]. A process may perform the observable trace a; . . . a, provided
that it has the property {(a1)) ... {(an))tt. The formula [K]££f expresses that the
observable set of actions K is a refusal. The pair (a; ...a,, K) is an observable
failure for a process if it has the property ((a1)) ... {an ) ([T]E£A[K] ££): a process
satisfies this formula if it can perform the observable trace a; ...a, and become
stable (unable to perform 7) and also be unable to perform any observable action
in K.

Recall that O is a universal set of observable actions (which does not contain
7). Let [—K] abbreviate [O — K] and similarly for (—K)). Moreover let [—]
and ((—)) be abbreviations for [O] and ((©O)). This means that the modal formula

[—] ££ expresses an inability to perform an observable action: so the process Div

has this property when Div e Div.

The modal logic of the previous section permits the expression of immediate
necessity or inevitability. The property that a process must perform a next is
given by the formula (—=)tt A [—a]ff. However the similarly structured formula
{(—=Ntt A[—a] £ does not preclude the possibility that the observable action a
becomes excluded through silent activity. For instance both clocks CI and OV
earlier have the feature ((—))tt A [—tick]££: CI’ has this property because it is
able to perform an observable transition (so satisfies ((—)}tt) and is unable to
perform any observable action other than tick (and so satisfies [—-tick] ££). But



Cl' may silently break down and therefore be unable to tick. This shortcoming
can be surmounted with the strengthened formula [ ] {(—))tt A [—tick] £f. Now
Ol = [1{=)tt because of the silent transition CI' == 0. But there is still a
question mark over this formula as an expression of necessity. Let Cly be a further

clock, Cly def tick.Cly + 7.Cly, which satisfies [—tick] ££ as its only observable
transition is that of tick. However it also has the property []{—))tt as the
set {F : Cl; => F} contains the sole element Cl; which obeys ((—)tt. But
interpreting this as the inevitability that tick must be performed fails to take
into account the possibility that Cl; perpetually engages in internal activity and
therefore never ticks.

A process diverges if it is able to perform internal actions for ever: we write
E 1 if E diverges following [36], and E | if E' converges (fails to diverge). So Cly |
whereas CI' |. Convergence and divergence are not definable in the modal logics
introduced so far. Consequently we introduce another modality [|], similar to
[ 1, except it contains information about convergence:

EE[]® if £| andVFe{E : E==LE'} FE®

From this we can define the modality [| K] as [|][K][ ]:
EE[K]® iff E| andVFe{E : E= FE anda€K}. FE®

Other mixtures are also definable: [K [Jas [ ] [K][l]; and [| K |] as [I] [K][!]-
Thus the stronger necessity [|] {(—)tt A [—tick] £f excludes divergence.
Features of processes concerning divergence, appealed to in definitions of
behavioural refinement [36], can also be expressed as modal formulas in this ex-
tended modal logic. For instance the strong property that there can not be diver-
gence throughout the observable trace ay .. .a, isgivenas[| a1 |]...[| an |] tt.

2.3 Process equivalences

Process expressions are intended to be used for describing actual systems. Our
discussion has omitted criteria for when two expressions describe the same sys-
tem. Alternatively we can consider grounds for differentiating process descrip-
tions. Undoubtedly the clock Cl and the vending machine Ven of section 1.1 are
different. They are intended as models of distinct kinds of objects. Moreover at
every level they differ, their algebraic expressions, their action names, their flow
graphs, and their transition graphs. A concrete manifestation of these differences
is their initial capabilities. The clock Cl can perform the observable action tick
whereas Ven can not: Cl has the properties (tick)tt and ((tick))tt which Ven
fails to have.

Syntactic differences alone should not be sufficient grounds for distinguishing
processes. It is important to allow the possibility that two process descriptions
may be equivalent even though they differ markedly in their level of detail.
An example is the two descriptions of a counter Cty of figure 4 and Count of
section 1.5. An account of process equivalence has practical significance when we



view process expressions both as specifications and as descriptions of a possible
implementation. Ctg is a specification (even the requirement specification) of a
counter whereas the finite description Count with its very different structure
can be seen as a description of a possible implementation. Similarly the buffer
Cop can be seen as a specification of the process Protocol of section 1.2. In this
context, a theory of process equivalence could tell us when an implementation
meets its specification®.

Not only do Cty and Count have the same initial capabilities, but also this
feature is preserved as observable actions are performed. There is a similarity
between their observable transition graphs, a resemblance which is not immedi-

ately easy to define. A simpler case is the following two clocks, Cl 4l £ick.Cland

Cly def tick.tick.Cly. Although they have different transition graphs, whatever
transitions one of these clocks makes can be matched by the other and the res-
ulting processes also have this property. An alternative basis for suggesting that
these two clocks are equivalent starts with the observation that C! and tick.Cl
should count as equivalent expressions since the second is the definition of CI. A
useful principle is that if two expressions are equivalent then replacing one with
the other in some other expression should preserve equivalence. For instance, re-
placing Cl with tick.Cl in an expression £ should result in an expression which
is equivalent to E. In particular, if £ is tick.Cl then tick.Cl and tick.tick.Cl
are equivalent. As particular names of processes are unimportant this should
imply that Cl and Cl; are also equivalent.

The extensionality principle here is that an equivalence should be a congru-
ence, preserved by the various process combinators. For example if the decision
component D of the slot machine SM,, breaks down then replacing it with an
equivalent component should not affect the overall behaviour of the system (up
to equivalence). In principle, an equivalence which is also a congruence offers the
potential for structured reasoning about combinations of processes, and also the
possibility that equivalence proofs may be founded on equational reasoning.

Clearly if processes have different initial capabilities then they should not be
deemed equivalent. Distinguishability can be extended to many other features,
such as initial necessities, traces, and deadlock potentials. We can therefore ima-
gine choosing some simple properties as the basic distinguishable features, and
then stipulating that two processes are equivalent if whenever they are placed
in a process context the resultant processes have the same basic properties, and
thereby by definition the resulting equivalence is a congruence. This approach is
sensitive to three important considerations. First is the choice of what counts as a
basic distinguishable property and whether it is to do with observable behaviour
as determined by the == and == transitions or the single arrow transitions.
Second is the family of process operators that are permitted in process expres-
sions. Finally there is the question as to whether the resulting congruence can be
characterized independently of its definition, as preservation of basic properties
by all process contexts.

& Similar comments could be made about refinement where we would expect an order-
ing on processes.



Interesting work has been done on this topic, mostly however with respect
to the behaviour of processes as determined by the single thin transitions —.
Candidates for basic distinguishable features include traces and completed traces
(given respectively by formulas of the form (a1) ... {a,)tt and (a1) ... {(a,)[-]££).
Elegant results are contained within [13, 35, 34] which isolate congruences for
traces and completed traces. These cover very general families of process op-
erators whose behavioural meaning is governed by the permissible format of
their transition rules. The resulting congruences are independently definable as
equivalences”. Results for observable behaviour include those for the failures
model [40] which takes the notion of observable failure as basic. Related results
are contained in the testing framework of [36] where processes are tested as to
what they may and must do.

Example 1 Consider the following three vending machines:

Veny def 1p.1p.(tea. Ven; + coffee. Veny)
Vens def ip.(1p.tea. Vens + 1p.coffee. Vens)
Vens Lt 1p.1p.tea. Vens + 1p.1p.coffee. Vens

which have the same (observable) traces. Assume a user, Use et 1p.1p.tea.ok.0,
who only wishes to drink a single tea by offering coins and having done so
expresses visible satisfaction as the action ok. For each of the three vending
machines we can build the process (Ven; | Use)\K where K is {1p, tea, coffee}.
When i = 1 there is just one completed trace 77 7 ok:

(Veny | Use)\K "ZZ% (Veny | 0)\K

and so the user must express satisfaction after some silent activity. In the other
two cases there is another completed trace, 7 7:

(Ven; | Use)\K =5 (coffee.Ven; | tea.ok.0)\K

The resulting process here is deadlocked. So Ven; should not be equivalent to
either Vens or Vens.

With respect to the failures model of CSP [40] and the testing framework
of [36] Vens and Veng are equivalent. Finer equivalences distinguish them on
the basis that once a coin has been inserted in Vens any possible successful
collection of tea must already be decided. Imagine that after a single coin has
been inserted the resulting state is copied for a number of users: in the case of
Veng all these users must express satisfaction or all of them must deadlock. Let
Rep be a process operator that replicates successor processes.

Rep(E) - E' | E'
E % B

° They include failures equivalence (expressed in terms of formulas of the form
{a1) ... {an)[K]££), two-thirds bisimulation, two-nested simulation equivalence, and
bisimulation equivalence.



The two processes (Rep(Ven; | Use))\K, i = 2 and i = 3, have different com-
pleted traces. When i = 2 it has the completed trace 777 7ok

- TTT TE

(Rep(Vens | Use))\K ~ == (Veny | 0 | coffee.Vens | tea.ok.0) \ K

which (Rep(Vens | Use)) \K fails to have. O

2.4 Interactive games and bisimulations

Equivalences for CCS processes begin with the simple idea that an observer can
repeatedly interact with a process by choosing an available transition from it.
Equivalence of processes is then defined in terms of the ability for these observers
to match their selections so that they can proceed with further corresponding
choices. The crucial difference with the approach of the previous section is that
an observer can choose a particular transition. Such choices can not be directly
simulated in terms of process activity'’. These equivalences are defined in terms
of bisimulation relations which capture precisely what it is for observers to match
their selections. However we proceed with an alternative exposition using games
which offer a powerful image for interaction.

A pair of processes (FEg, Fp) is an interactive game to be played by two parti-
cipants, players I and II who are the observers who make choices of transitions.
A play of the game (Ey, Fy) is a finite or infinite length sequence of the form
(Eo, Fo)...(E;, Fy) .. .. Player I attempts to show that a conspicuous difference
between the initial processes is detectable whereas player II wishes to estab-
lish that they can not be distinguished. Suppose an initial part of a play is
(Eo, Fo)...(E;, F;). The next pair (Ej41, Fj41) is determined by one of the
following two moves:

— (): Player I chooses a transition Ej = Ej 41 from E; and then player 11
chooses a transition with the same label from the other process Fj —— Fj 1.
— [ ]: Player I chooses a transition F; —— Fj4; from F; and then player II

chooses a transition with the same label from the other process E; = Ejpa.

Player II knows which transition player I chose, and more generally both players
know all the previous moves. The play then may continue with further moves.
The next move in a game play is therefore very straightforward. The import-
ant issue is when a player is said to win a play of a game. A game is played
until one of the players wins, where the winning circumstances are described in
figure 13. If a player is unable to make a move then the other player wins that
play of the game. Player II loses when condition 1’ holds, when no corresponding
transition is available in response to a move from player I, which happens in the

10 For instance if E —% E; and E -2+ E5 then the observer is able to choose either of
these, but there is not a “testing” process @.F which can guarantee this choice in the
context (@.F | E)\{a}: the two results (F | E1)\{a} and (F | E2)\{a} are equally

likely after the synchronization on a.



Player II wins Player I wins

1. The play is (Eo, Fo)...(En, Fn) 1'. The play is (FEo, Fo)...(Exn, Fa)
and there are no available and for some a either
transitions from £, or from F,. E, % E' and not(3IF'. F, 2, F') or
F, % F’ and not(3E'". B, % E').
2. The play is (Eo, Fo) ... (En, Fr)
and for some 1 < n

F;=F, and F; = F,.

3. The play has infinite length.

Fig. 13. Winning conditions

configuration (E,, F},) when one of these processes is able to perform an initial
action which the other can not, and so a manifest difference is detectable. Player
I loses in the configuration (E,, F,,) when both these processes have terminated
or are deadlocked as described in 1. Player II also wins in the other two circum-
stances, first when there is a repeat configuration, when (F,, F,,) has already
occurred earlier in the play, as in 2, and second when the play has infinite length.
In both these cases player I has been unable to expose a difference between the
initial processes. Condition 2 is not necessary, as it is subsumed by 3: however
we include it because then an infinite length play is only possible when at least
one of the initial processes is infinite state.

Example 1 Each play of the game (Cl, Cl3), when Cl 4l tick.Cl and Cl, def
tick.tick.Cly, has the form (Cl, Cls) (Cl, tick.Cly) (Cl, Cl3) which ensures that
player I loses because of the repeat configuration. It does not matter whether
player I chooses the () or the [ ] move, as player II is guaranteed to win. In the
case of the game (Cl, Cls) when Cls def tick.Cls + tick.0 there are plays that
player I wins and plays that player II wins. If player I initially moves Cls REL
then after her opponent makes the move Cl tick Cl, the resulting configuration
(Cl,0) obeys condition 1" of figure 13, and so player I wins. Instead if player 1

tick

chooses the other [ ] move Cls — Cls then player II wins immediately with
the transition CI 2% CI. However player I has the power to win any play of

tick

(Cl, Cl5) by initially choosing the transition Cls = 0. Similarly player II is
able to win any play of (Cls, Cls) just by copying any move that player I makes
in the other process. a

A strategy for a player is a set of rules which tells her how to move depending
on what has happened previously in the play. A player uses the strategy « in a
play if all her moves in the play obey the rules in 7. The strategy # is a winning
strategy if the player wins every play in which she uses 7. In example 1 above,



player I’s winning strategy for the game (Cl, Cl5) consists of the single rule: if the
current game configuration is (CI, Cl5) choose the transition Cls Y% 0. In the
example game (Cls, Cl5), player II’s winning strategy contains the two rules: if
the current game configuration is (Cls, Cl5) and player I has chosen Cls rick Cls
tick tick

then choose Cls — Cls, and if it is (Cl5, Cl5) and player I has chosen Clz — 0
then choose Cl; 8K 0. It turns out that for any pair of processes one of the

players has a winning strategy, and that this strategy is history free in the sense
that the rules do not need to appeal to moves that occurred before the current
game configuration.

Example 2 The different choice points in the vending machines Vens and Veng
of the previous section ensure that player I has a winning strategy for the game

(Vens, Veng). O

Example 3 Player 1l has a winning strategy for the game (B, B') where these

processes are, B in.B |out.B and B’ i B +out.B’. In this case any play
has to be of infinite length, and player II's strategy resides with the fact that
she is always able to respond to any move by player 1. a

Example 4 Player II has a winning strategy for ((C' | U)\{in, ok}, Ucop’) when
these processes are:

¢ % in(2).out(z).0k.C

U def write(z).in(z).ok.U

Ucop' def write(z).r.out(z).7. Ucop’
A play has to proceed as follows, modulo the choice of data value:

((C|U)\{in ok}, Ucar’)
(C’_|in(vlok.U)\{in, ok}, T.oui'v).r. Ucop')
(out(v).ok.C' | ok.U)\{in, ok}, out(v).7. Ucop')
(ok.C' | ok.U)\{in, ok}, 7. Ucop”)

(C' | U)\{in, ok}, Ucop’).

P

An important feature is that each play has a finite bounded length even though
the processes are infinite state. a

When player II has a winning strategy for the game (E, F) we say that
process F is game equivalent to process F'. In this circumstance player II is able
to win any play irrespective of the moves her opponent makes, and so player 1
is unable to distinguish between E and F'.

Player Il can always match player I’s moves when two processes F and F
are game equivalent: by the ( ) move if F —2 E’ then there is a corresponding
transition ' —— F’ and E’ and F’ are also game equivalent, and by the []
move if F' =% F” then there is also a corresponding transition £ —— B’ with E’
and F’ game equivalent. This is precisely the criterion for being a bisimulation



relation. Bisimulations were introduced'! by Park [57] as a small refinement of
the equivalence defined by Hennessy and Milner in [38, 39, 50].

Definition 1 A binary relation R between processes is a bisimulation just in
case whenever (F,F)€ R and a € A,

1. if £ % E' then FF —% F' for some F’ such that (E', F') € R, and
2. if F % F’ then E - E’ for some E' such that (E', F') € R.

A binary relation between processes counts as a bisimulation provided that it
obeys the two hereditary conditions in this definition. Simple examples of bisim-
ulations are the identity relation and the empty relation.

Two processes E and F' are bisimulation equivalent (or bisimilar), written
E ~ F| if there is a bisimulation relation R with (E, F') € R.

Proposition 1 The relation ~ between processes is an equivalence relation.

Example 5 A classical example of two processes that are not bisimilar is
a.(b.0+¢.0) and @.b.0+ a.c.0. There cannot be a bisimulation relating this pair
because it would have to include either (6.0 4+ ¢.0,5.0) or (6.0 + ¢.0,¢.0). O

Proposition 2 If {R; : i € I} is a family of bisimulation relations then
U{R; : i €1} is a bisimulation relation.

A corollary of this last Proposition is that the binary relation ~ is the largest
bisimulation, as ~ is [J{R : R is a bisimulation}.
Not surprisingly bisimulation and game equivalence coincide.

Proposition 3 E is game equivalent to F' iff E ~ F.

Parallel composition is both commutative and associative with respect to
bisimulation equivalence (as is +): this permits us to drop bracketing in the case
of a process description with multiple parallel components (see the discussion in
section 1.2).

To show that two processes are bisimilar it is sufficient to exhibit a bisim-
ulation relation which contains them. This offers a very straightforward proof
technique for bisimilarity.

Example 6 The two processes Cnt and Ctj are bisimilar where

= up.(Cnt | down.0)

Cnt

Cty = up. Ct}

Ctiyq = up. Cl;, , + down.Ct;
A bisimulation containing the pair (Cnt, Ct,) has to be infinite because these
processes are infinite state. Let C; be the following families of processes for ¢ > 0

(when brackets are dropped between parallel components):

1 They also occur in a slightly different form in the theory of modal logic as zig-zag
relations, see [12].



Co :{Cnt|'0j 2 j >0}
Ciy1 ={F |0’ |down.0|0* : E€C;and j > 0and k > 0}

where | 0° = ' and F' | 0°t! = /| 0 | 0. The relation R = {(E, Ct}) : i >
0 and £ € C;} is a bisimulation which contains (Cnt, Cty). O

Bisimulation equivalence is also a congruence with respect to all the process
combinators introduced in previous sections (including the operator Rep).

Proposition 4 If £ ~ F then for any process G, set of actions K, action a,
and renaming function f,

l.a.E~aF 2 F+G~F+G 3. FE|G~F|G

4. E[f] ~ F[f] 5. E\K ~ F\K 6. E\\K ~ F\\K

7. E||kG ~ F||kG 8. rep(E) ~ rep(F).

Bisimulation equivalence is a very fine equivalence between processes, reflect-
ing the fact that in the presence of concurrency a more intensional description of
process behaviour is needed than for instance its set of traces. For full CCS the
question whether two processes are bisimilar is undecidable. As was noted in sec-
tion 1.5 Turing machines can be “coded” in CCS. Let T'M,, be this coding of the
n-th Turing machine when all observable actions are hidden (using the operator
\\ which can be defined in CCS). The undecidable Turing machine halting prob-

lem is equivalent to whether or not TM, ~ Div where Div 4T o Div. However an
interesting question is for which subclasses of processes it is decidable. Clearly
this is the case for finite state processes, as there are only finitely many can-
didates for being a bisimulation. Surprisingly it is also decidable for families of
infinite state processes including context-free processes and basic parallel pro-
cesses [23, 22]. By exploiting the observation in example 4, when the length of
a game play is boundedly finite, one can also show decidability of bisimilarity
for various classes of value passing processes whose data may be drawn from an
infinite value space.

2.5 Modal properties and equivalences

Another approach to understanding equivalences between processes is in terms
of families of modal properties. Each finite or infinite set of modal formulas I’
induces an equivalence relation =p on processes?:

E=rF iff Vel EE® iff FE®

Example 1 When I consists of all formulas of the form {(a;) ... (a,)tt the rela-
tion =p is traces equivalence. If I" contains the formulas {(a;) ... {a,)[—]ff then
the induced equivalence is completed traces, and when generalized to formulas

12 Similarly we can also define the preorder induced by I': ECr Fif VO € I'if E |= @
then F |= &.



(a1) ... {a,)[K]££ it is failures equivalence. Observable equivalences include ob-
servable traces and observable failures equivalence. O

There is an intimate relationship between bisimulation equivalence and hav-
ing the same modal properties. Let I' be the family of all modal formulas built
from the boolean connectives and the modal operators {[K], (K), [-], (=), [1]1}-
Bisimulation equivalence preserves modal properties.

Proposition 1 If E~ F then E=p F.

The converse of Proposition 1 holds for a restricted set of processes. A process
E is immediately image finite if for each a € A the set {F : E = F}is
finite. And E is image finite if every member of {F : Jw € A*. E == F} is
immediately image finite.

Proposition 2 If E and F are image finite and E =p F then E ~ F.

Clearly Proposition 1 remains true for any subset of modal formulas, and
Proposition 2 holds for the subset of modal formulas when the modalities are
restricted to be either [a] or (a), a € A. Under this restriction, these two res-
ults are known as the modal characterization of bisimulation equivalence, due
to Hennessy and Milner [38, 39]. This characterization not only reinforces the
naturalness of bisimulation equivalence but also suggests that modal logic is
well-suited for describing properties of processes.

Example 2 Consider the family of clocks P+ < tick. OF for i > 0 and the
clock 1% tick.Cl. Let E be the process » { Ccr :i> 0}, and let F' be E+ CI.
The processes E and F' are not bisimilar because the transition F Bk 01 would

tick

have to be matched by E =% CV for some j > 0, and clearly CI ok Cl. On the
other hand £ and F satisfy the same modal properties. a

There is an unrestricted characterization result for infinitary modal logic,
M, given as follows where [ ranges over arbitrary finite and infinite indexing
families:

b= N\{&:iel} | \[{®i :iel} | [K]® | (K)o

The satisfaction relation between processes and A and \/ formulas is defined as
expected

EEN{®; :icI} iff E =& forevery j€I
EEV{®; : iel} iff £ |=®; for some j € ]

The atomic formula tt is defined as A{®; : i € 0} and £f as \/{®; : i € 0}.
Proposition 3 E ~ F iff E =y F.

A variety of the proposed equivalences between image finite processes in the
linear and branching time spectrum, as summarized in [32], can be presented in



terms of games and in terms of =p when I is an appropriate subset of modal
formulas.

2.6 Observable bisimulations

In the previous two sections we have seen that there is a close relationship
between winning strategies, bisimulation relations, and modal properties. Not
one of this trio abstracts from the silent action 7, as each appeals to the family
of transition relations {—%: a € A}. By consistently replacing this set with the
family of observable transitions as defined in section 1.3, these notions uniformly
abstract from 7. We can define observable modal logic whose modalities are
restricted to the set {[K],[ 1, {(K)),{ )}. We can also define observable games
whose moves appeal to the thicker transition relations ==, a € O U {¢}, and
observable bisimulation relations.

A play of the observable game (Ey, Fy) is again a finite or infinite length
sequence of pairs (Eo, Fy)...(E;, F;) ... played by the two observers players I
and II. The next pair after an initial part of the play (Eo, Fo)...(Ej;, Fj) is
determined by one of the moves where a € O U {¢}:

— {( )): Player I chooses a transition Fj; == FEj4; from E; and then player 11
chooses a transition with the same label F; == Fj from Fj}.

— [ 1: Player I chooses a transition Fj = Fj41 from F; and then player 11
chooses a transition with the same label E; = E;4q from Ej.

A game is played until one of the players wins, where the winning circumstances
are depicted in figure 14. The only difference with section 2.4 is that player I is

Player II wins Player I wins

1. The play is (Eo, Fo)...(En, Fn) 1'. The play is (Eo, Fo)...(En, Fn)
and for some 1 < n, and for some a either
Ei=FE,and F; = F,. E, == E’ and not(3F'". F, => F') or
F, = F’ and not(3E'". E, = E').
2. The play has infinite length.

Fig.14. Winning conditions

always able to make a move (because of the empty transition).

Again a strategy for a player is a set of rules which tells her how to move,
and it is winning if the player wins every play in which she uses it. E and F' are
observably game equivalent if player II has a winning strategy for (E, F').

Underpinning observable game equivalence is the existence of an observable
bisimulation relation whose definition is as in section 2.4 except with respect to
observable transitions ==



Definition 1 A binary relation R between processes is an observable bisimula-
tion just in case whenever (F, F') € R and a € O U {¢},

1. if £ == E' then F' == F" for some F’ such that (E’, F') € R, and
2. if F == F' then £ == E’ for some E' such that (E', F') € R.

E and F' are observably bisimilar, written E =~ F', if there is an observable
bisimulation relation'® R with (E,F) € R. The relation & has many proper-
ties in common with ~. It is an equivalence relation, and the union of a family
of observable bisimulations is also an observable bisimulation, and so = is it-
self an observable bisimulation. Observable bisimulation and observable game
equivalence also coincide.

Proposition 1 E is observable game equivalent to F iff E ~ F.

A direct proof that two processes are observably bisimilar consists in exhib-
iting an observable bisimulation relation containing them.

Example 1 We show that Protocol &~ Cop by exhibiting an observable bisim-
ulation which contains them. (Again we drop brackets when processes contain
multiple parallel components as | is associative and commutative with respect
to this equivalence.) The following relation

{(Protocol, Cop)} U

{((Send1(m) | Medium | ok.Receiver)\J, Cop) : m € D} U
{((sm(m).Send1(m) | Medium | Recez’vew, out(m).Cop) : m € D} U
{((Send1(m) | Med1(m) @ceiv@\% out(m).C@ :m € D}U
{((Send1(m) | Medium | out(m).ok.Recez’K)\J, out(m).Cop) : m € D}U
{((Send1(m) | ms.Medium | Receiver)\J, out(m).Cop) : m € D}

1s an observable bisimulation. O

There is also an intimate relationship between observable bisimulation equi-
valence and observable modal logic, I".

Proposition 2 If E~ F then E=p F.

Notice that this result is not true if we include the modalities [K] and (K), or
the divergence sensitive modality [|]. The converse of Proposition 1 holds for
observably image finite processes. A process E is immediately image finite if for
each a € O U {¢} the set {F : E == F} is finite, and E is observably image
finite if each member of the set {F : Jw € (O U {e})*} is immediately image
finite.

Proposition 3 If E and F are observably image finite and E =p F then
ExF.

12 We have slightly departed from standard terminology, where =2 is called weak bisim-
ilarity, and Definition 1 above defines what is usually called a weak bisimulation
relation.



So far there is a very smooth transition from previous results concerning
the transitions — to observable transitions ==. This does break down at an
important point. Observable bisimilarity is not a congruence for the + operator
because of the initial preemptive power of 7. The two processes E and 7.FE are
observably bisimilar but for many instances of F' the processes £+ F and 7. E+F
are not. In CCS [39, 52] an important equivalence is the largest subset of & which
is also a congruence. As observable bisimilarity is a congruence for all the other
operators'? of CCS, this congruence, denoted by ~°, can also be described using
transitions. For it is only that initial preemptive 7 transition that causes failure.

Definition 2 E ~° F' iff

1. Ex F
2. if & = B then I' - Iy = F" and E' ~ F' for some F} and F’' and
3. if ' = ' then B - Fy = E' and E' ~ I’ for some E; and E’.

When E and F' are stable (as is the case with Protocol and Cop of example 1)
E ~ F implies £ =° F.

There is a finer observable bisimulation equivalence called branching bisim-
ulation equivalence which also has a logical characterization [27]: we consider it
briefly in section 3.2. Observable bisimilarity and its congruence are not sensitive
to divergence. So they do not preserve the strong necessity properties discussed
at the end of section 2.2. However it is possible to define equivalences that take
divergence into account [36, 40, 71].

2.7 Equivalence checking

A direct proof that two processes are (observably) bisimilar is to exhibit the
appropriate bisimulation relation which contains them. Example 7 of section 2.4
and example 1 of section 2.6 exemplify this proof technique. In the case that
processes are finite state this can be done automatically. There is a variety of
tools which include this capability including the Edinburgh Concurrency Work-
bench [25] which exploits efficient algorithms for checking bisimilarity between
finite state processes, as developed in [41].

Alternatively equivalence proofs can utilize conditional equational reasoning.
There is an assortment of algebraic, and semi-algebraic, theories of processes
depending on the equivalence and the process combinators: for details see [36,
40, 6, 52]. It is essential that the equivalence is a congruence. To give a flavour of
equational reasoning we present a proof in the equational theory for CCS that a
simplified slot machine without data values is equivalent to a streamlined process
description. The congruence is ~° which was defined in the previous section.

The following are important CCS laws which are used in the proof:

% More generally only case 2 of Proposition 4 of section 2.4 fails for .



a.r.x =ax
T+ T.X =T.Z

(x + y\K = 2\K + y\K

(a.z)\K =ua.(z\K) ifagKUK
(ax)\K =0 ifae KUK
z4+0 =z

The last four are clear from the behavioural meanings of the operators. The first
two are 7-laws and show that we are dealing with an observable equivalence.
There is also appeal to a rule schema, called an ezpansion law by Milner [52],
relating concurrency and choice:

ife; =) {a5.055 : 1<j<m} fori:1<i<mthenai|...|]2zyn =
SAaj (e | @iz @i | Tip1 | | 2m) s 1<i<mand 1 <j<n}+
SAr(@ |z [ apr | @egr |-l mica [y | ®iga |- | 2m)

1§k<i§mandak1:mj}

Proof rules for recursion are also needed. In the case that F does not contain
any occurrence of |, we say that P is guarded in F if all its occurrences in F
are within the scope of a prefix a. operator when a is an observable action. This
condition guarantees that the equation P = E, when the only process constant
E contains is P, has a unique solution up to &°: that is, if F' & E{F/P} and
G =° E{G/P} then F ~° G. This justifies the following two conditional rules
for recursion:

—if P E then P = E.
— if P = F and P is guarded in £, and @ = F and @ is guarded in F', and
E{Q/P}=F, then P=F.

The slot machine SM without data values, and its succinct description SM’
appear in figure 15. We prove that SM = SM’. The idea of the proof is to first
simplify SM by showing that it is equal to an expression which does not contain
the parallel operator. The proof proceeds on SM using the expansion law and
the laws earlier for \K, 0 and 7 (and the first recursion rule):

SM = (slot.JO; | bank.B; | max.D1)\ K

= (slot.(I0; | B | D) +bank.(I0 | By | D) + max.(IO | B | D1))\K
(slot.(I01 | B | D))\K + (bank.(I0 | By | D))\K + (max.(IO | B | D1))\K
=slot.(IO; | B| D\K +0+0
slot.(IO; | B| D)\K

Let SM; = (10, | B | D)\ K. By similar reasoning to the above we obtain:

SM; = T.T.(IOQ | left.B | Dl)\[{

Assume SMy = (104 | 1eft.B | D1)\K. Similarly, SMy = 7.SM3 + 7.5My:



def

10 ¥si1ot.700 101 ¥ bank.JO»

10, def lost.loss.JO + release.win. /O

B def bank. B B def max.left.B

D def max. D Dy def lost.left.D 4+ releaseleft. D

SM = (IO | B| D)\K where K = {bank, max, left, release}

SM' < slot.(rToss.SM' + r.win.SM’)

Fig.15. A simplified slot machine

SMs3 = (loss.JO | left.B | left. D)\ K
SMy = (win.JO | left.B | left. D)\ K

The 7-laws are used in the following chain of reasoning

SM; = (Toss.IO | left.B | Teft.D)\ K
=Toss(/O | left.B | left.D)\K + 7.(loss.IO | B | D)
=loss.(1.SM + slot.(IO; | left.B | 1left.D)\K) + t.1loss.SM
= loss.(r.SM + slot.7.(IO; | B| D)\K) + r.1loss.SM
=loss.(1.SM + slot.(I01 | B| D)\K) + 7.1loss.SM
= loss.(r.SM + SM) + r.loss.SM
=loss.7.SM + 1.loss.SM

By similar reasoning SMy = 7.win.SM. Backtracking and substituting equals
for equals, and then applying 7 laws:

SM = slot.SM;
= slot.7.7.5M,
= slot.7.7.(T.SMs + 7.SMy)
= slot.7.7.(7.7.10s5.SM + 7.7.win.SM)
= slot.(r.loss.SM + r.win.SM)

We have now shown that SM = E where E does not contain the parallel
operator, and where SM is guarded in E. The expression F is very close to the
definition of SM’. Clearly E{SM'/SM} = slot.(r.loss.SM' + r.win.SM’),
and so by the second recursion rule SM = SM’ which completes the proof.



3 Temporal Properties

Modal logic as introduced in sections 2.1 and 2.2 is able to express local capabil-
ities and necessities of processes such as that tick is a possible next (observable)
action or that it must happen next. However it cannot express enduring capab-
ilities (such as that tick is always possible) or long term inevitabilities (such
as that tick must eventually happen). These features, especially in the guise of
safety or liveness properties, have been found to be very useful when analysing
the behaviour of concurrent systems. Another abstraction from behaviour is a
run of a process which is a finite or infinite length sequence of transitions. Runs
provide a basis for understanding longer term capabilities. Logics where prop-
erties are primarily ascribed to runs of systems are called temporal logics. An
alternative foundation for temporal logic is to view these enduring features as
extremal solutions to recursive modal equations.

3.1 Modal properties revisited

A property separates a set of processes into two disjoint subsets, those with the
property and those without it. For example (tick)tt divides {Cly,tock.Cl;}

into the two subsets {Cl;} and {tock.Cl;} when Cl ' tick.tock.Cly. We let
| @ |° be the subset of the family of processes & having the modal property @,
the set {F € £ : E = @}. Consequently any modal formula @ partitions & into
|91 and £ — |9,

The set | @ |° is definable directly by induction on the structure of @ provided
that £ obeys a closure condition described below. First the boolean connectives:

Iee]® =€
I 2] 0
[eAv | =2 nfv|
love|® =[e|°u|v|

When # € {[K],(K),[1,{ »,[l]} is a modal operator the definition of the
subset of processes with the property #@ appeals to the process transformer
| # |¢ mapping subsets of £ into subsets of £.

|#21° = 1#I°1e1°

The operator |#|° is the semantic analogue of # in the same way that N is the
interpretation of A. In the cases of [K] and (K these transformers are:

IKIE =AX CE{Fe& if F— Fanda€ K then E € X}
HEY|F=AXCE{Fe&:AEeX. Fac K. F - E}

Of course we would like the direct inductive definition of |® | to coincide
with its definition as {F € £ : £ |= ®}. But this is only guaranteed when &



is a transition closed set, which obeys the condition if £ € £ and £ — F
then also F' € £. In the sequel we use P to range over non-empty transition
closed sets. Notice that the set of processes of a transition diagram is transition
closed. Therefore we also introduce the notation P(E) to be the smallest trans-
ition closed set containing E. If a set is transition closed then it is also closed
with respect to the thicker transitions == and ==. In the following result it is
assumed that |@ |7 is determined by its inductive definition.

Proposition 1 If E € P then £ €| @|7 iff EEo.

The following features will be exploited when we develop the temporal logic
later.

Proposition 2 IfE CF and # € {[K],(K),[1,{ ), [L]} then
lel"neciel”nF, |e|PuecC|o|fuF, and |#]"EC|#I” 7.

A property on a transition closed set of processes is that subset which has

it. Consider the family of clocks P = {Cli, Cl : i > 0}, where Cl T tick.Cl

and CI'H T gick.CF for every 1 > 0. What distinguishes Cl from the rest
of P is its long term capability for ticking endlessly. Each CI* ticks exactly @
times before stopping. This property divides P into the two subsets {Cl} and
P — {Cl}. But this feature can not be captured by any single modal formula!®
of the modal logics in sections 2.1 and 2.2.

Proposition 3 For any modal &, if Cl €| ® | then there is a j > 0 such that
for all k> j, CI* €| ®]|”.

3.2 Processes and their runs

Proposition 3 of the previous section shows that modal formulas are not very ex-
pressive. Although able to describe immediate capabilities and necessities, they
cannot capture more global or long term features of processes. We can contrast
the local capability for ticking with the enduring capability for ticking forever,
and the urgent inevitability that tick must happen next with the lingering inev-
itability that tick eventually happens.

Another abstraction from behaviour, which throws light on this contrast
between immediate and long term, is that of a run of a process Fy which is a finite
or infinite length sequence of transitions of the form Ejy 2L B 22 ... When a
run has finite length its final process is then unable to perform a transition. So a
run from Ey can be viewed as a computation from Ey, a maximal performance
of actions.

Game or bisimulation equivalence, as defined in section 2.4, “preserves” runs
as stated by the next Proposition.

Proposition 1 Suppose that Ey ~ Fy,

15 Of course, for each CI' there is the formula (tick)i‘i'ltt which it fails and which
holds of CL



l.if Bg 2 By 22 ... 2% B, is a finite length run from Eq then there

is a run Fy =% F; =% . 2~ F, from Fy such that E; ~ F; for all
1:0<2<n, and
2. if By =5 By =2 ... is an infinile length run from Eq then there is an

infinite length run Fy LI A N from Fy such that E; ~ F; for all 1.

Because Fy ~ Fy implies Fy ~ FEg, each run from Fj also has to be matched
with a run from Ep. A simple consequence is that the clock Cl is not bisimilar
to any clock CI' because CI has a run which cannot be emulated by CI*.
Clearly observable bisimulation equivalence, &, from section 2.6 does not
preserve runs in the sense of Proposition 1. A simple example is that the infinite
run Div —— Div —— ... has no correlate from 7.0 although Div ~ 7.0 when

Div Y 7. Div. We may try and weaken the matching requirement. For any run
from E there is a corresponding run from Fj such that there is a finite or infinite
partition across these runs containing equivalent processes. However this induces
a finer equivalence than observable bisimulation, called branching bisimulation
[33]. It should also be compared with “stuttering” equivalence as proposed within
[19].

Observable bisimilarity does preserve observable runs whose transitions are
given by the thicker arrows == and ==. But there is a drawback because of

== transitions. The process Cl 4T £ick.Cl has the observable inactive run
Cl = Cl = ... which means that it fails to have the observable property that
tick must eventually happen.

Many significant properties of systems can be understood as features of all
their runs. Especially important is a classification of properties into safety and
liveness, originally due to Lamport [43]. A safety property states that nothing
bad ever happens whereas a liveness property expresses that something good does
eventually happen. A process has a safety property just in case no run from it
contains the bad feature, and it has a liveness property when each of its runs
contains the good trait.

Example 1 A property distinguishing each clock Cl' from Cl is eventual ter-
mination. The good characteristic is expressed by the formula [—]ff. On the
other hand this can also be viewed as defective, as exhaustion of the clock. In
which case Cl has the safety property of absence of deadlock, which each CI'
fails. d

Example 2 The level crossing of figure 7 should have the crucial safety property
that it is never possible for a train and a car to cross at the same time. In terms
of runs this means that no run of Crossing passes through a process that can
perform both tcross and ccross as next actions, and so the bad feature is
(tcross)tt A (Ccross)tt. O

Liveness and safety properties of a process concern all its runs. We can weaken
them to features of some runs. A weak safety property states that something
bad does not happen in some run, and a weak liveness property asserts that



something good may eventually happen, that it eventually happens in some run.

Example 3 A weak liveness property of the slot machine SM,, of figure 10 is
that it may eventually pay out a windfall: the good thing is given by the formula
(win(10°))tt. O

There is considerable middle ground between all and some runs. Often we
are only interested in liveness and safety in the case of a subset of runs that obey
a particular condition.

Example 4 A desirable property of the level crossing is that whenever a car
approaches eventually it crosses: any run containing the action car also contains
the later action ccross. d

Sometimes these conditions are complex and depend on assumptions outwith
the possible behaviour of the process itself. For example the protocol of figure 9
fails to have the property that whenever a message is input eventually it is
output because of runs where a message is forever retransmitted. However we
may make the assumption that the medium must eventually pass to the receiver
a repeatedly retransmitted message, and that therefore these deficient runs are
thereby precluded.

Other properties are important such as cyclic properties. The clock Cl; earlier
performs tick immediately followed by tock cyclically starting with tick.

Example 5 The scheduler of section 1.4 ensures that the sequence of actions
ai ...a, is performed cyclically starting with a;. In this example other actions
(silent actions and the task termination actions b;) may be interspersed before
and after each a;. O

Modal logic expresses properties of processes as their behaviour unfolds
through transitions. Temporal logic, on the other hand, ascribes properties to
processes by expressing features of some or all of their runs. (For surveys of
temporal logic see [31, 49, 64].) In fact there is not a clear demarcation because
modal operators can also be viewed as temporal operators, which express “next”:

Ey = [K]® iff for all Ey runs Ey —— E; =2 ..., if a; € K then E; | &.
Ey = (K )@ iff for some Ey run Eg 2B 2 a1 €K and By E o.

In this work we do not base temporal logic upon the notion of a run. It is of
course a very useful abstraction. A run is simply a subset of a transition closed
set. Although the properties described in the examples above are not expressible
in modal logic of section 2 we shall find appropriate closure conditions on sets
of processes which define them, by appealing to inductive definitions built out
of modal logic. The idea is, for instance, that a long term capability is just a
particular closure of an immediate capability.



3.3 Modal equations and fixed points

Definitional equality, déf, is indispensable for describing perpetual processes, as in
the simple case of the uncluttered clock Clthat ticks forever. Imagine adding this

facility to modal logic, following Larsen [44]. For instance the modal equation

7 ¢ (tick)tt stipulates that Z expresses the same property, an ability to

perform tick, as (tick)tt. On any transition closed set P this characteristic is
given by the set | (tick)tt|”.

A more intricate modal equation is Z def (tick)Z where both occurrences

of Z select the same trait. Unlike the use of % in the definition of a process,
a recursive modal equation may express various properties on a set P, each of
which is a subset £ of processes obeying the condition & = | (tick)|” £. Any
such solution & is a fized point of the function f = AX C P. | (tick) I” X,
as f(£) = £. The equality can be bisected: £ is a prefized point of f, that is
F(€) C &, and it is a postfized point of f which is the other half, £ C f(£). These
halves can be viewed as closure conditions on any potential solution set &:
PRE if FE€&and E€ P and E 2% F then E € &
POST if E € £ then £ 2% F for some F € £
One solution is the empty set as it trivially fulfills both conditions. When P 1is
{Cl}, the other subset {Cl} also obeys both conditions because of the transition

Cl 2% Cl. Tn this instance both candidate solutions are successful fixed points,

and they can be ordered by subset, § C {Cl}. In the case that P is generated by

the more sonorous clock Cly def tick.tock.Cly that alternately ticks and tocks,
there are more candidates for solutions but besides () all the rest fail PRE or fail
POST.

With respect to any transition closed set the equation Z def (tick)Z has
both a least and a greatest solution (which may coincide) relative to the subset
ordering. The general result guaranteeing this is due to Tarski and Knaster. It
shows that the least solution is the intersection of all prefixed points, of all those
subsets obeying PRE, and that the greatest solution is the union of all post-
fixed points, of all those subsets fulfilling POST. The result applies to arbitrary
monotonic functions from subsets of P to subsets of P. The set 27 is the set of
all subsets of P, and the function g : 2% — 2% is monotonic with respect to C if

& C F implies g(&) C g(F).

Proposition 1 If g : 2F — 2% is monotonic with respect to C then g
i. has a least fized point with respect to C given by ({EC P : g(&) C &},
ii. has a greatest fized point with respect to C given by | J{E CP : £ C g(€)}.

Proposition 1 applies to any modal equation 7 Ty when ¥ is built from
modal operators, boolean connectives, the constants tt and £f, and Z: this
follows directly from Proposition 2 of section 3.1, which shows that all these
operators induce semantically monotonic functions. Relinquishing the equational



format we let pZ. ¥ express the property given by the least solution of Z Lef v,

and we let vZ. ¥ express the property determined by its largest solution.

For the equation earlier, the least solution pZ. (tick)Z expresses the same
property as ff: irrespective of P, the empty set obeys condition PRE. Much
more stimulating is that vZ. (tick)Z expresses the long-standing capability for

performing the action tick forever. Let £€ C P consist of all those processes

Ey that have an infinite length run of the form Ejy tick FEy Bk Tt is clear

that £ obeys POST, and that it is the largest such set. As shown in section 3.1
this capability is not expressible within modal logic. More generally, vZ. (K)Z
expresses a capability for performing K actions forever. Two special cases are
striking, vZ. (—)Z expresses a capacity for never-ending behaviour and vZ. (1} 72
captures divergence, the ability to engage in infinite internal chatter.

A more composite equation schema is Z Y, (K)Z where @ does not
contain Z. Any solution £ C P divides into the following two closure conditions:

PRE ifEEPand(EI:@orELFforsomeaEKandFEé')thenEES
POSTifEEEthenEh@orELFforsomeaEKandFEE

Every subset £ fulfilling PRE must contain those processes in P with the prop-
erty @, and also includes those processes that fail @, but are able to perform a
K action and become a process having @, and so on. Therefore a process Ej has
the property pZ.® VvV (K)Z if it has a finite or infinite length run of the form

a Ap—1 a . .
Ey —= ... = E, - ... with E, |= & for some n and where each action a;,

j < n, belongs to K: that is, Fy is able to perform K actions unt:l @ holds. The
maximal solution, vZ. ¢V (K)Z, also includes the extra possibility of performing
K actions forever without @ ever becoming true.

Two general cases of u7. 9V (K)Z are worth noting. When K is the complete
set of actions it expresses weak liveness, that @ is eventually true in some run,
and when K is the singleton set {7} it expresses that after some silent activity
& is true, that is {{ ))@. Recall that the modality {( )) is not definable within the
modal logic of section 2.1.

Another useful composite schema (assuming again that ¢ does not contain

Z)is Z PN (K)Z. The least solution is of no interest as it is expressed by ff.

The maximal solution over P is the union of all subsets £ obeying the following
condition POST

POST if £ € £ then E | ® and £ - F for some F € £ and a € K

which requires there to be a perpetual run involving only K actions and with
@ true throughout. A slight weakening is that @ holds throughout a maximal
performance of K actions, as expressed by vZ.® A ((K)Z V [K]ff), and when K
is the set of all actions it expresses a weak safety property.

The complement of weak liveness is safety. A process fails uZ. ¢ v (=)Z
if @ never becomes true in any run. Similarly the complement of weak safety
is liveness. A process lacks vZ.® A ((—)Z Vv [=]£f) if in every run eventually
@ is false. Complements are expressible when negation is freely admitted into



formulas with its intended meaning, | =& |7 is the set of processes P — | & |”.

But then not every modal equation has extremal solutions, a simple instance

is 7% -7 Tt fails the monotonicity requirement of Proposition 1. However, if

we restrict the form of an equation 7 1 & so that every free occurrence of 7
in @ lies within the scope of an even number of negations then monotonicity is
guaranteed.

However, the complement of a formula is also in the logic without the explicit
presence of negation. Let @ be the complement of @, which is defined inductively
as follows (assuming that Z° = Z):

tt° = ff ££° =tt
(DAW) =D°VUE (DY) =d° AW
(K)9) = (K)o°  ((K)o)° = [K]o*
wZ.9) =puz.¢° (u7.9) =v7.9°

It follows that |#°|7 = P— || |7.

If a property is an extremal solution to the equation 7 T & then its com-

plement is the dual solution to Z L' $°. Consider convergence which holds of a
process when it cannot perform silent actions for ever. The formulavZ. (1) 7 ex-
presses its complement, divergence, and so convergence is captured by puZ.[7]Z.
More generally pZ.[—]Z expresses that all behaviour is finite, that there are no
infinite length runs.

A strong invariance property is that @ holds throughout every ongoing per-
formance of K actions. This fails precisely when a process may perform K actions
continuously until @° holds. Failure here is given by the formula u7.9° v (K)Z
whose complement is therefore vZ.® A [K]Z. A particular case is that [ ] is
expressed as vZ.® A [1]Z. Safety properties, that nothing bad ever happens, fall
under this format.

A strong until property is that every continuous performance of K actions
eventually leads to the holding of @. This is therefore the complement of the
formula vZ.®° A ((K)Z V [K]ff) which is pZ.® V ([K]Z A (K)tt). Liveness
properties, that something good must eventually happen, have this form (when
K isreplaced by —). An example is that the slot machine must eventually output
(winnings or an indication of loss). A better description is that whenever a coin
is input the slot machine must eventually output, a property expressed using
both fixed point operators. However embedding fixed point operators within
each other goes beyond the simple equational format which motivated their
introduction.

3.4 Modal mu-calculus

Instead of appealing to modal equations to express temporal properties, we add
to modal logic propositional variables ranged over by Z, and the extremal fized
point operators vZ and pZ. As before assume that K ranges over subsets of A.
The formulas of the logic, modal mu-calculus, are:



& =7 | ByADy | D1V Dy | [K]D | (K)D | vZ2.® | pZ. &

The constant formulas tt and £f are definable as vZ.Z and pZ.Z. However
when describing properties we will freely use these constants.

In the sequel we let o range over the set {u, v}. A fixed point formula has the
form ¢Z.® in which o7 binds free occurrences of Z in @, and an occurrence of 7
is free if it is not within the scope of a binder ¢Z. We assume that ¢Z has wider
scope than the boolean connectives V and A. Formulas may contain multiple
occurrences of fixed point operators, as in vZ. uY. v X. [a](({6) X A Z) V [K]Y).
Also 07 may bind more than one occurrence of Z, as in vZ. (tick)Z A (tock)Z.

Assume a fixed transition closed set of processes P. We wish to inductively
define when the process F € P has a temporal property. Semantic clauses for
when a process satisfies a fixed point formula o7.¢ are needed. However such
clauses depend on interpreting subformulas of @ with possible free occurrences
of variables with respect to subfamilies of P. The satisfaction relation, |=, is
therefore defined indirectly in terms of | & |7, the set of all processes in P
with the property @. Subformulas containing free propositional variables are
dealt with using wvaluations, functions ranged over by V which assign to each
variable Z a subset V(Z) of processes in P. A customary updating notation is
also assumed: V[£/Z] is the valuation V' which agrees with V on all variables
except Z, when V'(Z) = €.

The subset of processes in P satisfying an arbitrary formula ¥ relative to the
valuation V is inductively defined as the set | & |}, where for ease of notation
we drop the superscript P which is assumed fixed throughout:

1Zly  =V(Z)
[@A@]y =2y |¥]y
[evely =|2|vU ¥y
I[Kl2lv =[[K]ll2]v

IE)Y2ly = [(K) ] [2]v
lvz.@ly = H{ECP : £C|Plvie/z}
|uZ. @y = (HECP : |®lvie/z1C €}

The subset of P with the property Z is that stipulated by the function V. The
semantic clauses for the boolean operators are as in section 3.1, except for the
additional valuation component for understanding free variables. The meanings
of the modal operators appeal to the transformers |[K]|” and | (K)|” defined
in section 3.1. (The derived clauses for the boolean constants are |tt |y = P
and |££]y = 0.)

It is straightforward to show that any formula @ determines the monotonic
function A£ CP. |® "175[8/2] with respect to the variable Z, the valuation V, and
the transition closed set P. Hence the meanings of the fixed point formulas are
instances of Proposition 1 of section 3.3: the greatest fixed point is given as the

union of all postfixed points whereas the least fixed point is the intersection of



all prefixed points. One consequence is that the meaning of ¢ Z. @ is the same as
its unfolding ®{cZ.®/7}.

Formulas of the logic without free variables are closed under complement: this
follows from the observations in the previous section. In particular (vZ.®)° is
uZ. ¢ and (uZ. P)° is vZ.P°: for instance (vZ. pY. v X. [a](((b) XA Z)V [K]Y))*
is the formula pZ. vY. puX. (a)(([b]X V Z) A (K)Y'). This is not true for open
formulas containing free variables. For example the formula Z does not have an
explicit complement. However as we employ valuations we are free to introduce
the understanding that a free variable Y has the meaning of the complement of
a different free variable Z.

Modal mu-calculus was originally proposed by Kozen [42] (and also see Pratt
[60]) but not for its use here'®. Its roots lie with more general program logics
employing extremal fixed points, developed by Park, De Bakker and De Roever,
especially when formulated as relational calculi [8, 9, 56]. Kozen developed this
logic as a natural extension of propositional dynamic logic. Larsen proposed
that Hennessy-Milner logic with fixed points is useful for describing properties
of processes [44]. Previously Clarke and Emerson used extremal fixed points on
top of a temporal logic for expressing properties of concurrent systems [28].

In the case of a closed formula @ (one without free variables), the subset |® |y
is independent of the particular valuation V, and so is the same as | @ |y for
any other valuation V. Therefore when @ is closed we let | @ |” be the subset of
processes of P with the temporal property @ relative to an arbitrary valuation,
and we also use the notation £ = @ to mean that £ €| & |”. More generally
when @ may contain free variables we write E |=y @ whenever E € || @ |y.

Example 1 Entangled fixed point formulas are the most difficult to understand.

Assume that D and D’ are the two processes D 4.0 and D' ¥ b0 + a.D,

and that P is {D, D', 0}. Let @ and ¥ be the following similar formulas:

G = vZ. 1Y [ (D)t A Z)VY)
W= uY.vZ. (et V Y) A Z)

The formula @ expresses that b is possible infinitely often throughout any infinite
length run consisting wholly of a actions, and so all the processes in P have this
property. The set (J{€ CP : & C | uY. [a](({(b)tt AZ) VY ) |yie/z} is P. To
show this we establish that P C | uY. [a](({(b)tt A Z) VY)|yp/z]. This depends
on proving that

P = (UFCP :Ia((B)ttA2)VY) |vp/zpirvS F}

Both 0 and D belong to | [a](({(b)tt A Z)V Y') |(vipz)F/y] because 0 is unable

to perform a, and D —— D’ and D’ 2. 0. Therefore F must also contain D’ as

D X D.

' The modalities here slightly extend those of Kozen’s logic as sets of labels may
appear within them instead of single labels, and on the other hand Kozen has explicit

negation. Kozen calls the logic “propositional mu-calculus” which would be more
appropriate for boolean logic with fixed points.



In contrast ¥ expresses that the action b is almost always possible throughout
any infinite length run consisting only of a actions. This means that |¥ | is the
singleton set {0} because 0 has no infinite length runs. First 0 belongs to the
intersection ({F C P : | vZ. [a](({(b)tt VY) A Z) |yiF/v1C F}. So we show
that {0} = U{EC P : £ |[a](({b)st VY)A Z) ”(V {0}/ Y)IE/Z] } Note that
D' & | [al(({b)tt VY) A Z) ||(V [fo}/vNie/z) as D does not have the property
Y under this valuation. So D’ can not belong to any £ which is a subset of
| [al(({b )tt VY)AZ) "(v[{o}/y Nie/z)- This means that D is also excluded as its
presence in & would require D' to have the property Z under this valuation. O

In section 2.2 we introduced other modal operators which are not definable
in the modal logic of section 2.1, namely { ), [ ], and [|]. In the presence of
fixed points these modalities are definable as follows (where we assume that Z
is not free in @):

(Vo pz.ov(rz
[1¢ Evz.on[r)Z
¢ < pz.o A2

Therefore the derived modalities (K)), [K], [| K] are also definable. For
instance, [K]® was defined as [][K][]® which is the fixed point formula
vZ. [K|(vY.®A[T]Y) A[7]Z. Observable modal mu-calculus is the sublogic when
the modalities are restricted to the subset {[],{ ), [K], {(K)}, when 7 ¢ K.
This fixed point logic is suited for expressing observable properties of processes.

An important feature of modal mu-calculus is that it has the finite model
property: if a closed formula holds of some process then there is a finite state
process satisfying it. A proof of this can be found in [67].

3.5 Approximants

At first sight there is a chasm between the meaning of an extremal fixed point
and techniques (other than exhaustive analysis) for actually finding the set it
defines. There is however a more mechanical method, an iterative technique, due
to Tarski and others, for discovering least and greatest fixed points. Let ug be
the least and vg the greatest fixed point of the monotonic function ¢ mapping
subsets of P to subsets of P.

Suppose we wish to determine the set vg, which is the union of all subsets
£ that obey & C g(&). Let v% be the full set P, and let vty be the set
g(vig). Clearly g(v°g) C v%, that is v'g C v g, and by monotonicity of g this
implies that g(v'g) C g(v%), that is 1/2g C vlg. Consequently by repeated
application of ¢ it follows that g(l/ g) C v'g for each 4, and so there is a possibly
decreasing sequence of sets, ¢ D Vlg D...D2v'g D .... The required set vg is
a subset of each member of this sequence. By deﬁnition vg C 1%, and therefore
g"(vg) C ¢"(v%) for any n where ¢" (x ) is the application of g to = n times. As
vg is a fixed pomt g"(vg) = vg, and ¢"(v°g) is the set v™g. If v'g is equal to

v'*1g then v'g is the set vg, and therefore also /g is vg for every j > i.



These observations suggest a strategy for discovering vg. Iteratively construct
the sets Vig starting from ¢ = 0, until Vig is the same as its successor yi+1g. When
P is a finite set containing n processes this iteration must terminate at, or before,
the case ¢ = n, and therefore vg is equal to v"g.

Example 1 Let P be {Cl,tick.0,0}, and let g be A& CP. | (tick)Z |vie/2)-

vVWy="p = {Cl, tick.0,0}
V;g = | (tick)Z |y[og/2) = {Cl, tick.0}
v_g = | (tick) Z |yprg/z) = {Cl}

v2g = [{tick) Z Jyp2g)z) = {CT}

Stabilization occurs at the stage v?g as this set is the same as v3¢, and con-
sequently is the same as v"g for all n > 2. Consequently vyg is the singleton set

(cuy. O

When P is not a finite set of processes, we can still guarantee that vg is reachable
iteratively by invoking ordinals as indices. Ordinals can be ordered as follows:

0,1,.. ., ww+1l,...,wtwwtw+1, ...

Here w is the initial limit ordinal (one without an immediate predecessor) while
w + 1 is its successor'’. Assume that o, 8 and A range over ordinals. The set
vty is defined as g(v®g) and v*g when ) is a limit ordinal is (H{r%g : a< A}
Therefore there is the possibly decreasing sequence

I/OgQ...QngQVngQ...

The set vg is not only a subset of each member of this sequence, but also appears
somewhere within it'®, and the first such point is not when the ordinal is a limit.

Example 2 Let P be the set {C, B; : i > 0} when C' is the cell C' def in(2).B;

with z : N, and B, 44 L down.B, for each n. Let g be X CP.|(=)Z|vie)z-
The fixed point vg is the empty set. (The formula vZ. (—)Z expresses a capability
for infinite behaviour which every member of P lacks.)

Vg =P ={C,B; : i >0}
vlg = {=)Zlvwogsz) = {C, Bi i > 1}

Vitlg = (=) Zvpigyzy = {C, B;i i > j+1}

The set v*g, defined as (J{v'g : i < w}, is the singleton set {C} as each B;
fails to belong to it. The next iterate is the fixed point, v“T'g is | (=) Z vipeg/2

which is §. Here stabilization occurs at v“*1g with () as the fixed point vg. O

17 All the processes considered in this work belong to a countable transition closed set
P, and so we only need to consider those ordinals whose cardinality is at most that

of N.

'8 The proof is similar to that described for the finite state case earlier.



The situation for the least fixed point pg is dual. The required set is the
intersection of all preﬁxed points, of all subsets & C P with the feature that
g(§) C &. Assume that u’g is the empty set, and that pitlg is the set g(,u'g).
Therefore there is the possibly increasing sequence of sets u’y C ,u gC...C
plg C ... and ugis a superset of each of the sets u'g. Again if p'yg is equal to
its successor ,uZ‘Hg then p'g is the requlred fixed point ,ug An iterative method
for finding pg is to construct the sets u'g starting with p°g until it is the same
as its successor. When P is finite and consists of n processes this iteration has
to terminate at, or before, u"g.

Example 3 Let g be A C P. | [ticK]ff V (—)Z |ye/z] when P is as in
example 1.

wg="0

pog = |[tick]ff V(=) Z |vfuog/2) = {0}

plg = | [ticKfE V (=) Z |v[urg/z] = {tick.0,0}
pog = | [ticklff V(=) 7 |ypuzg/2) = {tick.0,0}

wt\v»ﬂo

Stabilization occurs at p’g which is the required fixed point. Notice that if we
consider vg instead then we obtain the following different set.

vy = P = {Cl,tick.0,0}
v'g = |[ticK]££ V (=) Z |ypog 7 = P
This stabilizes at the initial point. a

If P is not a finite set then again we may need to invoke larger ordinals as
indices. The set u*T'g is g(u“g), and ptg is the union set UH{e% + a < A}
when A is a limit ordinal. Therefore there is the possibly increasing sequence

plgC...CpugCptlgc..

The set pg is a superset of each member of this sequence, and also occurs within
it, and the first such time is not when the ordinal is a limit.

Example 4 Consider the following clock O’
ol (ol i>o0)

o+t E gicx or

Cl' describes an arbitrary new clock, which will eventually break down. Let P
be the set {Cl', CI' : i > 0}. As all behaviour is finite each process in P has the
property uZ.[tick]Z. Let g be the function A& C P. || [tick]Z |ye 2]

pg =0 f
plg = [[6ick]Z lypuogyz) = {CF : j <1}

pt g = | [t1cK]Z |ypuigym = {CV : j<i+1}



So the initial limit point u“g is U{,uig . 1 < w} which is {Clj 2 j > 0}. At the
next iteration the required fixed point is reached as u“*'g is | [tick]Z lviue /2]
which is P, and moreover p%g = P for all a > w + 1.

The sets 0%g are approzimants for og in that they converge towards it. Each
v®g approximates vg from above, whereas each u®g approximates pug from below.
In this way an extremal fixed point is the limit of a sequence of approximants.

We now provide a more syntactic characterization of these fixed point sets in
the extended modal logic Mo, of section 2.5. If g is AE C P. | @ |y[e 7] then vy is
|vZ. @y and pg is | uZ. 2|y (both with respect to P). The initial approximant
v’g is just | tt |y and p°g is | ££]y. Therefore v'g is | ® |y[py, /7] which is the
set | ®{tt/Z} |y: similarly u'g is | ®{££/Z} ||y. For each ordinal o we define
ocZ% @ as a formula of M.,. As before let A be a limit ordinal:

vZ% @  =tt AR IR T

vzt o =o{vz®.0)7} pZtt o = o{uz®. 0)7}

vZ @& = NwZ*d :a<)} pZtd =\{uZ%d : a< A}
Proposition 1 If g is A6 C P. | @ |yiejz) then 0% = | cZ%. @ |y for all
ordinals «.

A simple consequence is that we can now give a more direct definition of
E |y @ when @ is a fixed point formula:

EeEyvZ oift El=vZ® @ for all «.
EEeyuZ oiff EEpZ* @ for some a.

Example 5 In the previous section we contrasted the definitions of [ ] & and
[1]® in modal mu-calculus. Let vZ. ¥ be the formula vZ.® A [7]Z (expressing
[1®) and let uZ. ¥ be uZ.® A[r]Z (expressing [|]®)'°. Consider the different
approximants these formulas generate:

vZ° U = tt AR ¢
vZ' U= A[r]tt = & pZ' W =& A7)t

vZ W =®N[r]d pZ* W =& A[1)(D A [r]£1)

vZ' W=D N[ SA[T(DA .. [r]D. )
pZ' =@ AN[T|(@A[T

=
kS
>
)
—
kS
>
=
H
H
~—
N—
~—

The approximant ,uZi. ¥ carries the extra demand that there can not be a se-
quence of silent actions of length i. Hence [|] @ requires all immediate 7 beha-
viour to eventually peter out. a

19 Tt is assumed that Z is not free in .



3.6 Embedded approximants

Approximants provide an iterative technique for discovering fixed point sets. All
the examples in the previous section involved a single fixed point. In this section
we examine the technique in the presence of multiple fixed points, and comment
on entanglement of approximants.

Example 1 The vending machine Ven has the property vZ.[2p, 1p|¥ A [-]Z,
when ¥ is pY. (—)tt A[—{collects, collect; }]Y. Let P be the transition closed
set { Ven, Veny, Ven;, collect;. Ven, collect;. Ven}. First using approximants
we evaluate the embedded fixed point ¥, and we abbreviate its ith approximant
to pY":

pY® =10

pY' = | (=)tt A [—{collecty, collect; }Y |ypuyo/v]
= {collecty.Ven, collect;. Ven}

pY? = | (=)tt A [—{collecty, collect; Y |ypuy1/v]
= {Veny, Veny, collecty. Ven, collect;. Ven}

pY? = | (=)tt A [—{collecty, collect; Y |ypuyz/v]

Next the outermost fixed point is evaluated, given that the meaning of ¥ is P.
We abbreviate its ith approximant to v.7".

vZ° =P

vZ' = |[2p, 10l A [=]Z |y 2021
=P

Here the embedded fixed point can be evaluated independently of the outermost
fixed point. a

Example 1 illustrates how the iterative technique works for formulas with
multiple fixed points that are independent of each other. In abstract terms,
the formula of example 1 has the form v7.$(Z, uY. ¥(Y)) where the notation
makes explicit which variables can be be free in subformulas: here Z does not
occur free within the subformula Y. ¥(Y) but may occur within (7, uY. ¥ (Y)).
Consequently when evaluating the outermost fixed point we have that:

vZ® =P
vZ' = ®(Z,pY U (Y))lvpzos21

V2 2 |02 bty

Throughout these approximants the meaning of the subformula gY. ¥ (Y) is in-
variant because it does not contain Z free: consequently |uY. W (Y) |y, za,z2] is
the same set as | Y. W(Y) |y, z5/2] for any ordinals « and f3.



Example 2 Assume that D and D’ are as in example 1 of section 3.4, where
DL D D -2 D, and D LN 0, and P is {D, D’,0}. Also recall the pair of
formulas @ and ¥.

S =vZ. uY. [a(((b)tt AZ)VY)

U=pYvZ [a(({(b)ttVY)AZ)

Consider now evaluating @ using approximants.

vz’ =P
vZ' = | uY. Ja) (b5 A Z) V) lvp 20/
MYoo -0
pY?h = a(((B)eE A Z) VYY) [y zo/zpuy oo/y]
= {0, D}
pY® = | [al(((b)ss A Z) VY ) [ wpp 20/ 2Dty o1/ v]
=P
Sovzt="P

Here calculating vZ" depends on calculating the innermost fixed point when Z is
contained within it, and therefore when it initially receives the value vZ° for Z.
Hence the notation: ,qui represents the ith approximant of the subformula pre-
faced with uY when any free occurrence of Z is understood as the approximant
vZ? . The case of ¥ illustrates this further.

pY® =10
Y = |vZ. [a)(B)et V Y) A Z) [vpuyo) v
vZ% = p
vz = |[a](((b)ttVY) A Z) leviaye sy zeo )2
— {0,D}
v 792 :{|| [}a](((b)tt VY)AZ) vy yivzer 2]
= {0
v 703 :{|| [}a](((b)tt VY)AZ) vy y)ivzo) 2]
= {0
So ILLY; = {0}
pY = = vz [a](((b)et VY) A Z) |vpuy /v
vz =P
vZ = |[a]((b)tt VY) A Z) leviayr/ynwzre)2)
— {0,D}
A :{|| [}a](((b)tt VY)AZ) vyt yDivzr 2]
= {0
vZB = |[a](((b)tt VY) A Z) loviay /v zr2)2)

|
—_
o
—

Here we need to evaluate the innermost fixed point with respect to more than
one outermost approximant. O



Example 2 illustrates dependency of fixed points. The first formula has the
shape vZ.®(Z, uY. W(Z,Y)) where 7 is free in the innermost fixed point. Eval-
uation of such a formula using approximants takes the form:

vz =P
vzt =92, uY. U (Z,Y)) lvzos2)
,UYOO — @
pY ™ = (2, Y) wwzozpay oo v1

vZH = |02, pY W(Z,Y) v zi2
wy' =0
pY™ = W(Z,Y) | ziyz)uy o/ v]

The meaning of the subformula pY.¥(Z,Y) may vary according to the inter-
pretation of 7.

Approximants for vZ. ® and pZ. ® start from the sets vZ° = P and uz° = 0.
In principle, there will be fewer calculations if the initial approximants are closer
to the required fixed points. A set vZ° = & where P D £ D||vZ.&| could be a
better initial point than P. This observation can be utilized when evaluating an
embedded fixed point formula whose shape is vZ. &(Z, vY. ¥(Z,Y)).

vZ°="p
vZ' = | O(Z,vY. W(Z,Y))|vpzo2]
vy = p
VYOl = ” W(Z, Y) "(V[VZU/Z])[VYOU/Y]

vZ® = | O(Z,vY. W(Z,Y)) vz 2]

To evaluate vZ” one needs to calculate | vY.¥(Z,Y) |y 717 However by
monotonicity we know that

lvY W (Z,Y) vz CIvY. - W(Z,Y) lviyzoy21 € P

Therefore we can use | vY.W(Z,Y) |y z0/2] as the initial approximant Y10
and so on:



vZ® =P
vZ' = |®(Z,vY.U(Z,Y)) |vpzoz)
Vyoo — 0
I/}ZO1 = "L[’(Z, Y) ”(v[yzu/z])[yyuu/y]

vZ® = |®(Z,vY.U(Z,Y)) |viyz2
Vyi) = |vY W(Z,Y) |vpzosz
vY' = |W(Z,Y)|wpzoszpyio) v

vzt = | o(Z, vY W(Z,Y)) vz 2]
vY O = |0y W (2,Y) vz 2
I/YH_M — ||W(Z, )”(V[ ZY]Z))[vY *+10/Y]

This observation can be extended to formulas with multiple embedded maximal
fixed points.

The situation is dual for least fixed points. Choosing the set £ for uZ° when
0 C & C|puZ.@| could be a better starting point than (). In the case of a formula
whose shape is pZ.&(Z, uY. ¥(Z,Y)), by monotonicity we know that

0N Y U(Z,Y) Ivuzijz) CIHY W(Z,Y) vz 2

and so the set | uY. ¥ (Z,Y) |y[uzi/z) can be used as the initial approximant
Py i+10,

This insight is of no help for evaluating alternating fixed points, such as
vZ.9(Z,pY. W(Z,Y)). We cannot use the set | uY. ¥(Z,Y) |y [v20/7] & the initial
approximant for | uY. W (Z,Y) |y, z1/7] because the ordering is now reversed:
vZ° D2 vZ', and so | pY. W(Z,Y) |ypzoyz; 2 | pY.-W(Z,Y) |y z1)2). We do not
know how to approximant a least fixed point from above or a greatest fixed point
from below. The amount of alternation of fixed points in a formula has become
a crucial measure when developing algorithms for checking properties of finite
state systems, see [30, 47].

3.7 Preservation of bisimulation equivalence

Modal logic characterizes strong bisimulation equivalence, as was shown in sec-
tion 2.5. There are two halves to this result. First, two bisimilar processes have
the same modal properties (even when enriched with modalities of section 2.2).
Second, two image finite processes with the same modal properties are bisimilar.
As modal logic is merely a sublogic of modal mu-calculus the second of these
results remains true for this richer logic (and indeed for any extension of modal



logic). We may wonder if the restriction to image finite processes is still necessary
for this result given that fixed points are expressible using infinitary conjunction
and disjunction, and that infinitary modal logic M, characterizes bisimulation
equivalence exactly. Recall the example of the two clocks in section 2.5 that
showed that image finiteness is essential in the case of modal logic. The two
clocks have the same modal properties but they are not bisimilar. The presence
of fixed points allows us to distinguish them because one of the clocks has an in-
finite tick capability expressed by the formula vZ. (tick) which the other lacks.
The following more complex example due to Roope Kaivola shows the continu-
ing need for image finiteness (or a weakened version of it). Let {Q; : i € I'} be

the set of all finite state processes whose actions belong to {a, b}, and assuming

neNlet P(n) ¥ a"b.P(n+1), RE S {a.Q; : icI},and PE P(1)+ R

(where a°.F is E and "' E is ¢".a.E). The behaviour of P(1) is:
ab aab aaab a™b a™ttp
P(l)—>P(2)—>P(3)—>...—>P(n—|—1) — ..
Consequently P and R are not bisimilar as this would require there to be a
finite state process J; that is bisimilar to b.P(2), which is not possible (via the
pumping lemma for regular languages). On the other hand, P and R have the
same closed modal mu-calculus properties.
It also turns out that two bisimilar processes have the same modal mu-
calculus properties provided that they are expressed using closed formulas. Let
I" be this set of closed formulas, and let =p be as in section 2.5.

Proposition 1 If £~ F then E=p F.

Notice the significance of this result. Bisimilar processes not only have the same
safety properties but also the same liveness, fairness, and cyclic properties when
expressed using closed formulas. There is an indirect proof of this Proposition
via Mo, as the set I' is a sublogic of it, and bisimulation equivalence preserves
properties expressible within it. However we shall show how it can be proved
directly, as we wish to expose some of the inductive structure of modal mu-
calculus.

Let P be a fixed transition closed set of processes. A subset £ of P is bisim-
ulation closed if it obeys the condition: if £ € £ and ' € P and E ~ F then
F € £. Proposition 1 is equivalent to the claim that for any closed @ and set P
the subset ||@ | is bisimulation closed.

Lemma 1 If € and F are bisimulation closed subsets of P then the sets ENF,
EUF,|IKIIT €&, and | (K) |7 & are bisimulation closed.

Associated with any subset £ of P are the following two subsets:

E'={E€&: if E~F and F € P then F € £}
E'={Fe€eP: E~Fand Fe&}

The set £9 is the largest bisimulation closed subset of £, and £ is the smallest
bisimulation closed superset of £, both with respect to P.



Lemma 2 For any subsels & and F of P, the sets EX and E are bisimulation
closed and E° C & C &". Moreover, if £ is bisimulation closed then &t = &,
and if E C F then £ C F and Y C F¥.

A valuation V mapping variables to subsets of P is bisimulation closed if for
each variable Z the set V(Z) is bisimulation closed. Therefore we can associate
the two important bisimulation closed valuations V¢ and V¥ with any valuation
V: for any variable Z the set V4(Z) = (V(Z))* and V*(Z) = (V(Z))". Propos-
ition 1 is a corollary of the following result where @ is an arbitrary formula of
modal mu-calculus which therefore may contain free variables.

Proposition 2 If V is bisimulation closed then | @ |y is bisimulation closed.

The proof of Proposition 2 is by simultaneous induction on the structure of @
with the following three propositions:

1. If V is bisimulation closed then | @ |y is bisimulation closed.
2. If | @ |yC & then | |y.C £°.
3. If £ C| @]y then £ C | |ye.

This result tells us more than that bisimilar processes have the same properties
when expressed using closed formulas. They also have the same properties when
expressed by open formulas provided that the meanings of the free variables are
bisimulation closed. The proof of this result also establishes that closed formulas
of observable modal mu-calculus (built using the modal operators [K], [ ], (&),
and {( ))) are preserved by observable bisimulation equivalence.

3.8 Expressing properties

Modal mu-calculus is a very powerful temporal logic which permits expression
of a very rich class of properties. In this section we examine how to express a
range of properties that pick out important features of processes.

Informally a safety property states that some bad feature is always precluded.
Safety can either be ascribed to states, that bad states can never be reached, or
to actions, that bad actions never happen. In the former case if the formula &°¢
captures those bad states then vZ.® A [—]Z expresses safety.

Example 1 The safety property for the crossing of figure 7 is that it is never
possible to reach a state where a train and a car are both able to cross: these
bad states can be captured by the formula ([tcross]ffV [ccross]ff)®. Therefore
the required safety property is vZ.([tcross|ff V [ccross]ff) A [—]Z. O

It is useful to allow the full freedom of the property notation by employing
open formulas with free variables and appropriate valuations which capture their
intended meaning. For instance in the case of safety assume that £ is the family
of bad states, and so the formula vZ. Q A [—]Z expresses safety relative to the
valuation V which assigns P — £ to ). The variable ) has a definite intended
meaning as given by V.



Example 2 A safety property for the slot machine in figure 10 is that it never
has a negative amount of money and therefore never pays out more than it
contains. To express this we appeal to the open formula v Z.Q A[—]Z with the free
variable () relative to the valuation V which assigns the set P — {SM; : j < 0}
to . Here a bad state is a slot machine with a negative amount of money. O

The idea is that free variables should only express immediate properties of pro-
cesses, as in example 2 (and not temporal features). When V is bisimulation
closed with respect to the free variables of @, we say that the property expressed
by @ relative to V is extensional: by Proposition 2 of the previous section this
implies that | @ |y is also bisimulation closed 2 of the previous section. The
safety formula in example 2 is extensional. If ) expresses a feature such as “has
at least three parallel components” then it is intensional.

Safety can also be ascribed to actions, that no action in K ever happens,
which is expressed by the formula vZ. [K]£f A [-]Z. However there is really no
distinction between safety in terms of bad states and in terms of bad actions. For
the action case is just equivalent to saying that a bad state obeying ([K]ff)°,
that is (K)tt, can not be reached.

A liveness property states that some good feature is eventually fulfilled. Again
it can either be ascribed to states, that a good state is eventually reached, or
to actions, that a good action eventually happens. If @ captures the good states
then uZ. @V ({(=)tt A [=]7Z) expresses liveness with respect to state. Note the
presence of (—)tt to ensure that @ does become true. In contrast that eventually
some action in K happens is expressed by the formula 7. (=)tt A[—K]Z which
states that any performance of actions other than K is well-founded, and not
because the process terminates.

There is not a reformulation of liveness with respect to actions in terms of
liveness with respect to state, as a formula of the form pZ. &V ({(=)tt A [-]2)
where @ does not contain fixed points. For instance it is not expressed by either
of the following pair:

pZ AK)tt Vv ((—)tt A [-]2)
RZ. ((=)tt A [—K]EE) V ({(—)tt A [—]2)

The first is too weak as it merely states that eventually some action in K is
possible without any guarantee that it happens. The second is too strong as
it states that eventually only K actions are possible (and therefore must then
happen).

Wealk liveness and safety properties may also be ascribed to states or actions.
However recall that weak liveness is the complement of safety and weak safety
is the complement of liveness. That @ is eventually true in some run is given by
(vZ.9°N[-]Z)¢ which is the formula uZ. PV (—)Z. And that some action in K
happens in some run is expressed by (vZ.[K]ff A [—]Z)° which is the formula
uZ. (K)tt V (=)Z. Weak state safety, that @ is true throughout some run, is
expressed by (uZ.0°V ((=)tt A [—]Z))°, which is the formulavZ. & A ([-]f£ V
(—=)Z) and that there is a run where no action in K occurs is (pZ. (—)tt A



[-K]Z)° whichis vZ.[-]ffV (—K)Z. So in the case of weak safety there is the
distinction between state and action.

Liveness and safety may relate to subsets of runs. For instance they may be
triggered by particular actions or states. A simple case is that if action a ever
happens then eventually b happens, so any run with an a action must contain a
later b action. This is expressed by the formulavZ. [a](uY. (=)ttA[-b]Y)A[-]Z.
A safety example is that whenever ¥ becomes true, ®° is then always precluded,
expressed by vZ. (V°V (T AVY. S A[-]Y)) A [-]Z.

More complex is the expression of liveness properties under fairness. An ex-
ample is the property that in any run if the actions b and ¢ happen infinitely
often then so does a which is expressed as follows:

vZ. (puX. [b](vY. [c](vY1. X A [—a]Y1) A [—a]Y) A [-]2)

Here there is an essential fixed point dependency, as the occurrence of X is free
within the fixed point subformula prefaced with vY.

Example 3 The desirable liveness property for the crossing of figure 7 is that
whenever a car approaches the crossing eventually it crosses is captured by the
formula

vZ.[car](uY.(=)tt A [—ccToss|Y) A [-]Z

However this only holds if we assume that the signal is fair. Let @ and R be
variables and V a valuation such that () is true when the crossing is in any state
where Rail has the form green.tcross.red.Rail (the states Fs, E3, E¢ and
Eyp of figure 8) and R holds when it is in any state where Road has the form
up.ccross.down. Road (the states Fy, F3, E7 and Fi1). The liveness property
is: for any run if Q° is true infinitely often and R° is also true infinitely often
then whenever a car approaches eventually it crosses. This is expressed by the
following open formula relative to V

VY [car](uX .vY1.(QV[-TcToss] (1 Ys.(RV X )A[—CcToss] Y2 ) )A[—ceross] Y )A[-]Y

The property expressed here is extensional. In this case we can view @ and R
as probes in the sense of [70]. O

Another class of properties is until properties. These are of the form @ remains
true until ¥ becomes true, or in terms of actions K actions happen until a J
action occurs (or a mixture of state and action). Again they can be viewed as
holding of all runs, or some runs, or of a particular family of runs which obey a
condition. The formula pY. ¥ Vv (& A (=)tt A [—]Y) expresses that @ holds until
¥ in every run. Note here the requirement that ¥ does eventually become true.
This commitment can be removed by changing fixed points. The property that
in every run @ remains true unless ¥ holds does not imply that ¥ does become
true, and so is expressed as vY. ¥V (@ A [-]Y).

Sometimes we are only interested in part of the behaviour of a process. There
are many ways to understand what part of a behaviour means. A simple case is



when attention is restricted to a subset of the actions that a process can perform.
Liveness, safety and until properties can therefore be relativized in this way. An
example is the property that @ is eventually true in any run consisting of K
actions.

Cyclic properties can also be described in the logic. A simple example is that
each even action is tock: if By — E; —2 ... is a finite or infinite length run
then each action as; is tock. This is expressed as vZ.[—]([—tock|ff A [—]Z).

The clock Cly def tick.tock.(Cly has this property. It also has the tighter cyclic
property that every run involves the repeated cycling of tick and tock actions,
expressed as vZ. [—tick|ff A [tick]([—tock]ff A [—]Z)?°. These properties can
also be weakened to some family of runs. Cyclic properties that allow other
actions to intervene within a cycle can also be expressed.

Example 4 Recall the scheduler from section 1.4 which timetables a sequence
of tasks, and which must ensure that a task cannot be restarted until its previ-
ous performance has finished. Suppose that initiation of one of the tasks is given
by the action a and its termination by b. The scheduler therefore has to guar-
antee the cyclic behaviour ab when other actions may occur before and after
each occurrence of a and each occurrence of b. This property can be defined
inductively:

cycle(ab) = [b]£1 A [a]cycle(ba) A [—a]cycle(ab)
cycle(ba) = [a]ff A [b]eycle(ab) A [—b] cycle(ba)

Here we have left open the possibility that runs have finite length: appropriate
occurrences of (=)tt preclude it. An important issue is whether these recursive
definitions are to be interpreted with least or greatest fixed points, or even with
a mixture of them. This depends upon whether intervening actions are allowed
to go on forever without the next a or b happening. If we prohibit this, the
property is expressed as follows:

pY. [blff A [a](pZ. [a]f£ A [B]Y A [=b]Z) A [—a]Y
The number of actions in the cycle can be extended. O

Another class of properties is given by counting. An instance is that in each
run there are exactly two a actions, given by:

pX. [a]l(pY. [a](vZ.[alf£ A [=]Z) A (=)tt A[—a]Y) A (=)tt A [—a] X

Another example is that in each run a can only happen finitely often, uX.vY. [a] XA
[—a]Y.

However there are also many counting properties that are not expressible
in the logic. A notable case is the following property of a buffer (which is a
consequence of [62]): the number of out actions never exceeds the number of in
actions.

20 This formula leaves open the possibility that a run has finite length. To preclude it
one adds (—)tt at the outer and inner level.



4 Verifying Temporal Properties

A very rich temporal logic has been introduced which is able to describe useful
liveness, safety, cyclic and other properties of processes. The next step is to
provide techniques for verification, for showing when processes have, or fail to
have, these features.

To show that a process has, or fails to have, a modal property we can ap-
peal to the inductive definition of satisfaction between individual processes and
formulas, and a proof of a modal property thereby reduces to proofs of sub-
properties, as stipulated by the inductive definition of satisfaction. Therefore
the transition graph of a process is not needed when proving modal properties.

However in the case of modal mu-calculus the satisfaction relation between
processes and formulas is defined indirectly. The primary semantics of a formula
@ is defined in terms of every process in a transition closed set which has the
property. One method for determining whether E has @ is to first present a
transition closed set of processes containing E, second to calculate | @ |y with
respect to this set, and then finally to check whether E belongs to it. When F
has a small transition graph this is a reasonable technique. As a general method
it is cumbersome and not feasible for processes that determine enormous let
alone infinite state transition graphs. Moreover, picking out all processes in a
transition closed set which have a weak liveness, safety or cyclic property may
involve considerable redundancy if the intention is to show that a particular
process has it.

An alternative approach to showing that processes satisfy formulas is to
appeal to their approximants as described in sections 3.5 and 3.6. A more direct
definition of satisfaction is then available. However proofs will now require the
use of induction over ordinals, and some care must be taken with limit ordinals.
In the presence of embedded fixed points this will require the use of embedded
induction. Moreover, we will then lose that simple idea that a proof of a property
reduces to proofs of subproperties.

Discovering fixed point sets in general is not easy, and is therefore liable to
lead to errors. Instead we would like simpler, and consequently safer, methods
for checking whether temporal properties hold. Towards this end we first provide
a different characterization of the satisfaction relation between a process and a
formula in terms of games. It turns out that a process has a property just in
case player II has a winning strategy for the game associated with this pair.
Underpinning player II’s successful strategy is the notion of a successful tableau.
We therefore also present tableau proof systems for property checking, which

were originally developed with David Walker [66] and Julian Bradfield [17].

4.1 Games and constants

In this section we present an alternative characterization of the satisfaction re-
lation between a process and a formula relative to a valuation in terms of game
playing. A property checking game is a pair, a process and a formula, (F,®)
relative to a valuation V. As with equivalence games there are two players, I and



II. Player I attempts to show that E fails to have the property @ relative to
V whereas player 11 wishes to establish that £ does have @. Unlike equivalence
games, players here do not necessarily move in turn?!.

A play of the property checking game (Eg,®g) relative to V is a finite or
infinite length sequence of the form (Ey, @g) ...(Ey,®@y). ... The next move in a
play, the step from (Ej, ®;) to (Ej+1,P;+1) and which player makes it is determ-
ined by the main connective of @;. An essential ingredient is the use of auxiliary
propositional constants, ranged over by U, which are introduced as fixed point
formulas are met. Suppose an initial part of a play is (Eq, @) ...(E;,®;). The
next pair (Ej41,Pj41) is determined by one of the moves of figure 16, accord-
ing the main operator of @; Note the duality between the rules for A and V,

— if &; = ¥; AW, then player I chooses one of the conjuncts ¥;: the process Ej4q is
E; and D4, is ¥;.

— if @; = ¥, V ¥, then player Il chooses one of the disjuncts ¥;: the process Ej41 is
E; and ;44 is ¥;.

— if &; = [K]¥ then player I chooses a transition E; —— E;;; with a € K and &4,
is Y.

— if &; = (K)¥ then player 1T chooses a transition E; —— FE;41 with a € K and
¢J+1 is V.

— if ®; = vZ. ¥ then player I chooses a new constant U and sets U e ) Z.¥: the
process Ejy1 1s Ej and &;44 1s U.

— if &; = pZ. ¥ then player II chooses a new constant U and sets U ef wnZ. V. the

process Ejy1 1s Ej and &;44 1s U.
def

— if @; =U and U = vZ.¥ then player I unfolds the fixed point so @;41 is ¥{U/Z}
and Ej;41 is Ej.

— if ;= U and U ¥ 4Z. ¥ then player IT unfolds the fixed point so @;41 is ¥{U/Z}
and Ej4q1 is Ej.

Fig.16. Rules for the next move in a game play

[K] and (K}, vZ. ¥ and puZ.¥ as they complement each other. Each time the
current game configuration is (E,07.9) a new constant U is introduced as an
abbreviation for o Z.®, and at the next step this fixed point is, in effect, unfolded
once as the formula becomes #{U/Z}?%. The point of constants is to provide a
mechanism for understanding when embedded fixed points recur.

The rules for a next move are backwards sound with respect to the inten-
tions of the players. If player I makes the move (Ej41,@j41) from (E;,P;) and

21 Tt is straightforward to reformulate their definition so that players take turns.

22 The decision to make player I responsible for introducing and unfolding constants
for maximal fixed point formulas and player II responsible for least fixed points is
somewhat arbitrary, as these moves never provide real choice for either player. An
alternative exposition is to appeal to a third participant, a referee who makes these
moves.



Ej41 v Pj4q1 then E; Wy &;. In contrast, if player IT makes this move and
Ejt+1 Ev ®j41 then Ej Ey &;. This is clear for the rules which govern boolean
and modal operators. In the case of a fixed point formula this follows provided we
understand the presence of a constant to be its defined equivalent. Formulas are
no longer “pure” as they may contain constants. However we can recover a pure
formula from an impure formula by replacing constants with their defined fixed
points in reverse order of introduction: assuming that U; def v . U, def 18
the sequence of declarations in order of introduction, the meaning of ¥ is just
U{w, /Uy} ... {¥1/U1}. Consequently the fixed point unfolding principle, that
E =y 0Z® iff £ |=y ${cZ.®/Z}, justifies the backwards soundness of the
moves determined by constants.

A player wins a play of a game in the circumstances depicted in figure 17.
If the configuration (E,tt) or (F,Z7) when E € V(Z) is reached in a play

Player II wins Player I wins

1. The play is (Eo,Po) ... (En,®») 1. The play is (Eo,Po) ... (En, )

and either @,, = tt or and either @,, = £f or
$,=Z7and F €V(Z). $, =7 and E ¢ V(7).

2. The play is (Eo,®o)...(En,®,) 2'. The play is (Eo,Po) ... (En, )
and @, = [K]¥ and the set and @, = (K)¥ and the set
{F:E-% Fandaec K}=0. {F:E-“ FandaeK}=0.

3. The play is (Eo,®o)...(En,®,) 3'. The play is (Fo,®o)...(En, )
def def

and @, = U and U = vZ.® and and @, = U and U = pZ. P and
FE; =F, and &; = &,, for 1 < n. FE; = F, and &; = &,, for 1 < n.

4. The play (Eo,®Po)...(Ei,Pi)... 4'. The play (Eo,Po)...(Ei,P:)...

has infinite length and there is a has infinite length and there is a
constant U = pZ. & such that for constant U = wZ.® such that for
infinitely many 3, ¢, = U. infinitely many 3, ¢, = U.

Fig.17. Conditions for winning a game play

then player I cannot refute that £ =y tt or £ |y Z, and therefore player 11
wins. Instead if the configuration reached is (Z, (K)®) and there are no available
transitions from F then player IT is unable to establish that E =y (K)®. Similar
comments apply to the dual conditions 1’ and 2. The other circumstances when
a player is said to win a play concern repetition. If the configuration (F,U)
is repeated in a play when U abbreviates a maximal fixed point formula then
player II wins. Dually if U abbreviates a least fixed point it is player I that



wins?®. More generally as a play can have infinite length this repeat condition
for winning is generalized. Player I wins an infinite length play if there is a least
fixed point constant U which is traversed infinitely often, and player II wins if
there is a greatest fixed point constant U which occurs infinitely often, and only
one of these can happen.

Lemma 1 If (Eo, @) ...(En,®y)... is an infinite length game play then there
is exactly one constant U which for infinitely many j, &; =U.

This lemma shows the role of constants (as they provide an exact account of
when the same fixed point subformula is repeated).

As with equivalence games, a strategy for a player is a family of rules which
tells her how to move depending on what has happened earlier in the play. A
player uses the strategy 7 in a play if all her moves in the play obey the rules
in 7. The strategy 7 is winning if the player wins every play in which she uses
7. Every game (F,®) relative to V is determined, that is either player I has a
winning strategy or player Il has a winning strategy, and this strategy is history
free in that the rules do not need to appeal to moves that occurred earlier in the
play. So a strategy for player I tells her how to move in the game configurations
(E, 21 AN®y), (E,[K]®), (E,vZ.®) and (E,U) when U def vZ.®, and a strategy
for player II is similar, as it decides the next configuration when the current one
is (E,®; V&), (E, (K)®), (E, uZ.®) and (E,U) when U % pz. 0.

Player II has a winning strategy for (E,®) relative to V just in case E has
the property @ relative to V.

Theorem 1 FE =y @ iff player II has a winning strategy for the game (E,®)
relative to V.

Theorem 1 yields an alternative account of the satisfaction relation between pro-
cesses and formulas. Game playing does not require explicit calculation of fixed
points, nor does it depend on induction over approximant indices. Moreover it
does not require the construction of the transition graph of a process. Game
playing also maintains the principle that a proof of a property reduces to sub-
proofs of subproperties, provided that we view the unfolding of a fixed point
formula as a subformula. There is another feature which could be exploited, the
possibility of more sophisticated game playing where moves may also be guided
by the algebraic structure of a process expression.

As an infinite length game play must traverse a particular constant infinitely
often, it follows that when E is finite state a play of (£, ®) has finite length.
There is also an exponential upper bound on the number of different plays up to
renaming of constants of such a game. Property checking of finite state processes
via game playing is therefore decidable. However this is not a very time efficient
method as the length of a play may be exponential in the number of fixed point
operators in a formula. In section 4.3 we provide less costly techniques based on
games. For the remainder of this section we illustrate game playing.

2% These two conditions 3 and 3’ are in fact redundant. We only include them because
they guarantee that any play of (E, &) has finite length when E is finite state.



Example 1 Player II has a winning strategy for the game (Cl,vZ. (tick)Z7).
The only possible play is (ClivZ. (tick)Z) (Cl,U) (Cl, (tick)U) (Cl,U) up to
renaming the constant: the winning strategy here is, in effect, the empty set
of rules, as player II has to make the move (Cl,U) from the configuration
(Cl, {tick)U), and choice of fixed point constants does not affect play. Player II
also has a winning strategy for (Cls,vZ. (tick)Z) with respect to the slightly

different clock Cl5 " tick. Cls + tick.0. A winning play is almost identical
to the previous game play, (Cls,vZ. (tick)Z) (Cls,U) (Cls, (tick)U) (Cls,U):
the important part of the winning strategy is the rule, if (Cls, (tick)U) is the
current configuration then choose (Cls, U) as the next move. d

Example 2 Cnt is a simple infinite state system, Cnt def up.(Cnt | down.0). It
has the property that it may do up forever, as the single play of (Cnt, vZ. (up)2)
is won by player II. However this play has infinite length:

(Cnt,vZ. (up)Z) (Cnt,U)(Cnt, (up)U) (Cnt | down.0,U) ...

Player II wins because the constant U recurs infinitely often. For a similar reason
player I wins the only play of (Cnt, uZ. [up]Z) as then a least fixed point constant
occurs infinitely often. a

Example 3 Assume that D and D’ are as in example 1 of section 3.4, with
DD D % Dand D LI 0, and let ¥ be the formula:

wY. v Z. [a)((B)stV Y) A Z)

D' (and D) fails to have the property ¥, and so player I has a winning strategy for
the game (D', ¥). The important rules in this strategy are: if (D, ({(b)ttVU1)AUs)
is the current configuration, for any Uy, Us, then choose (D, (b)tt V Uy) and if
it is (D', ({b)tt V U1) A Uz) then choose (D', Usy). The play proceeds:

(D', w) (D, U) (D, vZ. [a)(({(b) etV U) A Z)) (D', V)
(D', [a) (b)Yt v U) AV)) (D, (Bt vV U) A V) (D, (bt vV )

At this last configuration player II has a choice. If she chooses the first disjunct
she then loses because there is not a b transition from D. So the play proceeds:

(D, U)(D,vZ.[a)(({b)tt vV U) A Z)) (D, W)
(D, [al(((b)ee v U) AW)) (D', ((b)et vV U) A W) (D', W)
(D', [a](((B)st V U) AW)) (D, ({byst vV U) AW) (D, (b)tt vV U)

Again player IT has a choice at (D, (b)ttV U), but both options lose: as D has no
b transition she can not choose the first disjunct, and the second disjunct gives
a repeat configuration. Note the essential requirement in game playing that a
new constant is introduced when a fixed point is met, and so both V and W are
introduced for the same fixed point formula. O



4.2 Tableaux

When processes are game equivalent, as developed in section 2, a bisimulation
relation expresses player II's winning strategy. We now develop a tableau proof
system for property checking so that a successful proof tree captures a winning
strategy for player II. Here we restrict ourselves to finitely branching processes.
The proof system here was first presented in [66]. It is guaranteed to show
properties of finite state processes, and is a precursor of a later property checker
which can also establish temporal features of infinite state processes.

A proof is built from sequents of the form E Fy & which are analogues of
the semantic notion E |=y & and of the game configuration (E,®) relative to
V. Usually the index V is dropped from Fy . The proof system is goal directed,
similar in style to the rules we presented for transitions in section 1. Each proof
rule has the form

Er-o
EiF&y.. By,

with n > 1 and possibly with side conditions. The premise sequent F + @
is the goal to be achieved (that E has the temporal property @) while the
consequents are the subgoals. The rules are presented in figure 18. Again we use

EFoAY
Er-od ERY

Erovy VEI—Q"V!I/

Er® ErVY

EtF[K]®

Eibd ... E,- D
Er(K)D

Fro
oZ. 7E'E_:%¢ U 57 & and U is new

EFrU def
AN Y
EFo{U/Z} 7

[K] {F:E-* Fanda€c K}={E\,...,E,}

(K) EX Fanda€eK

Fig.18. Tableau rules

auxiliary propositional constants, ranged over by U, as abbreviations of fixed
point formulas.

The rules are backwards sound in the sense that if all the consequents of any
rule are true then so is the premise goal. This is clear for fixed point formulas
provided we understand the presence of a constant to be its defined equivalent
as in the previous section.



To test whether F has the property @ relative to V, one tries to achieve
the goal £ -y @ by building a successful tableau, a finite proof tree whose root
is labelled with this initial sequent, and where all the leaves are labelled by
sequents that are true. Sequents labelling the immediate successors of a node
labelled F' - ¥ are determined by an application of one of the rules, dependent
on the form of ¥. As the rules are backwards sound, it follows that if the leaves
of a finite proof tree are true then so is the root. So we need to present conditions
for when a node in a proof tree counts as a leaf.

We assume that the rules above only apply to nodes of a proof tree that are
not terminal. A node n labelled with the sequent F' - W is terminal if one of the
following conditions hold:

Successful terminal Unsuccessful terminal

lL=ttor¥=Zand FeV(Z) 1. ¥=fforW=2andF ¢&V(7)

2. ¥ = [K]® and the set 2'. W = (K)® and the set
{E:F--Fandac K} =10 {E:F - FEandae K} =10
3.0 =Uand U ¥ vZ. & and 3V =UandU % pz.0
and there is a node above and there is a node above
n labelled '+ ¥ n labelled F ¥

It is clear that nodes labelled with sequents which obey 1 or 2 are successful
as then F has the property ¥ relative to V, and similarly nodes labelled with
sequents fulfilling 1’ or 2’ are not true. The remaining two conditions are ana-
logues of termination of a finite length game play through repetition, and are
pictured in figure 19. It is at this point that we distinguish in the proof theory

def def

U< vz.d U uz.d
FrU FrU
FrU FrU
Successful Unsuccessful

Fig. 19. Termination through repetition

between the two kinds of fixed points as they are not differentiated by the rules
earlier.



Definition 1 A successful tableau for E by, @ is a finite proof tree whose root
is labelled with F by @, and all other nodes are labelled with sequents which
are the result of an application of one of the rules to the sequent labelled at
the node immediately above them, and all of whose leaves are successful (obey
conditions 1, 2 or 3 above).

A path in a finite proof tree for Fy - @ is a finite sequence of labelled nodes
Ey b @q...FE, b &, where each one lies directly beneath its predecessor, and
where the final node (labelled E, F @,) is a leaf. Associated with a path is
the game play (Eo,®@q)...(Fn,Py). In the case of a successful tableau, player
II wins each of these plays. Moreover all the possible choices player I can make
are present in the proof tree (up to renaming of constants). A successful tableau
for F F @ is a concrete expression of player II’s winning strategy for the game
(E,®), and is therefore a proof that E has the temporal property @.

Proposition 1 If E by @ has a successful tableau then E |y &.

Example 1 A complete description of the clock Cl is that it perpetually ticks
and can do nothing else. This singular capability is expressed by the following
formula, vZ. ([—tick]ff A (=)tt) A [-]Z. Below is a proof that CI has this
property, where we omit the side conditions on the [K], (K), 07, and constant
rules.

CltvZ. ([—tick|[ff A (=)tt) A [—]Z
Cl-U
ClE ([—tick]ff A (—)tt) A [-]U
ClF [—tick|ff A (—)tt Cl+-[-]U
ClF [—tick]ff CI+ (=)tt CIFU
Clk tt

There are three kinds of successful leaf here. O

Example 2 The vending machine Ven, from section 1.1, has the property that
whenever 2p is deposited eventually a big item is collected, which is expressed by
the formula¥ = vZ. [2p](uY. (=)ttA[—collect;|Y)A[—]Z. A successful tableau
is presented in two stages in figure 20 where @ abbreviates the subformula
uY. (=)tt A [—collect]Y, and cp.Ven and c;. Ven abbreviate collect;.Ven
and collect;. Ven. Notice how similar the subtableaux 7'1 and 72 are. Later we
examine how to amalgamate their proof trees. d

Example 3 Let D and @ be as in example 1 of section 3.4. The resulting
successful tableau for D F & is presented in figure 21. Notice the important
requirement that a new constant is introduced when a fixed point is met. Both
V and W abbreviate the same fixed point formula. a

The tableau proof system presented here is complete for finite state processes.
This is a consequence of the game characterization of satisfaction.



Ven W
Vent U

Ven + [2p]® A [-]U

Ven + [2p]® Ven b [-]U
Veny + @ T1T T2
Veny H V

Veny F (—)tt A[—collecty]V

Veny F (=)tt Veny b [—collecty]V

cp. Ven F tt cp. Ven bV

cp. Ven F (=)tt A[—collecty]V

cp. Ven b (=)tt cp. Ven b [—collecty]V

Ven F tt

T1
Veny U

Veny - [2p]® A [-]U

Veny - [2p]® Veny + [-]U
Veny + [-]U
cp.Ven b U

cp. Ven - [2p]® A [-]U

cp. Ven - [2p]®  cp.Ven b [-]U
Ven U

T2
Veni = U

Veni b [2p]@ A [-]U

Ven; + [2p]® Veni - [-]U
Veni + [-]U
c.Venk U

ci. Ven - [2p]® A [-]U

ci.Vent [2p]® ci.Vent [-]U
Ven = U

Fig. 20. A successful tableau for Ven



DFo

DU

Db Y. [a(Btt AU) VY)

DRV

D+ [a((B)tt AT) V)

D'F (bt AU)VYV

D'F(b)tt AT

D'+ (b)tt D'vFU

Ok tt D'F pY. [al(({(B)tt ATU)VY)

D'+W

D'+ [a(((BYtt AT) VW)

DF((tt AU)VW

DFW

D+ [a](((B)tt A U) VW)

D' ((B)tt AU)VW

D'E(B)tt AU

D'F (bt D'FU

OF tt
Fig.21. A successful tableau for D + &

Proposition 2 If E is a finite state process and E |=y @ then E Fy & has a
successful tableau.

4.3 Refinement of games and tableaux

In this section we refine the definition of game play to provide a more efficient
characterization of the satisfaction relation by reintroducing constants. We then
show how this refinement affects the construction of tableaux.

Figure 16 contains the rules for the next move in a play whose initial part is
(Eo, Do) ...(E;,®;). We now change the rules for introducing constants for fixed
points, and divide each of them into two cases.

— if &; = vZ. ¥ and player I has not previously introduced a constant V def



vZ. ¥ then player I chooses a new constant U and sets U ) Z.W: the

process Fji1is Fj and @41 1s U.

— if @; = uZ. ¥ and player II has not previously introduced a constant V def

uZ. ¥ then player II chooses a new constant U and sets U Lt uZ. U the
process Fji1 is F; and @441 1s U.

— if @; = vZ.¥ and player I has previously introduced a constant V 7w

then ;11 is E; and @44 is V.
— if @; = uZ. ¥ and player Il has previously introduced a constant V' def R4
then ;11 is Ej and @44 is V.

This change means that constants are reintroduced as abbreviations for the same
fixed point formula. All the other moves and who is responsible for them remain
unchanged.

We also need to change the criteria for when a player wins a play. The
winning conditions for the earlier games are given in figure 17. We retain the
conditions 1, 2, 1’ and 2': for instance if the configuration reached in a play is
(F,[K]¥) and the set {E : F - E and a € K} is empty then player I wins.
The other conditions 3, 4, 3’ and 4’ need to be redefined because constants are
reintroduced. An infinite length play may now contain more than one constant
that recurs infinitely often.

The following definition provides a useful notion that will be used in the
reformulated termination conditions.

Definition 1 The constant U is active in @ iff either U occurs in @, or some

constant V % ¢Z.W occurs in @, and U 1is active in c Z.¥.

The discipline of introducing constants ensures that being active is well defined.

If Uy def oz W ... U, def 02, W, is the sequence of declarations of distinct

constants in order of their initial introduction then although U; can be active in
U; when @ < j it is not possible for U; to be active in U;. Activity of a constant
can be extended to finite or infinite length sequences of formulas: we say that U
is active throughout @y ...®,, ... if it is active in each &;.

The following lemma governs the remaining winning conditions.

Lemma 1 i. If (Eo,®o)...(En, ®n) is an initial part of a game play and
®; = @, for some i < n, then there is a unique constant U which is active
throughout @;...9, and which occurs there, @; = U for some j:1<j<n.

il. If (Eo,®0)...(En,®p)...is an infinite length game play then there
ts a unique constant U which occurs infinitely often and is active throughout
D;... D, ... for some j > 0.

A repeat configuration (E,¥) when ¥ is any formula, and not just a constant,
terminates play. Who wins depends on the sequence of formulas between (and
including) the identical configurations. There is exactly one constant U which
is active throughout this cycle and which occurs within it: if it abbreviates a
maximal fixed point formula then player Il wins and otherwise it abbreviates a



least fixed point formula and player I wins. This replaces conditions 3 and 3’ of
figure 17. In any infinite length play there is a unique constant which is traversed
infinitely often and which is active for all but a finite prefix: if this constant
abbreviates a maximal fixed point formula player II wins and otherwise player
I wins. This replaces conditions 4 and 4’ of figure 17. These revised termination
conditions are pictured in figure 22. Again the conditions 3 and 3" are redundant,
and are only included because they guarantee that any play from a finite state
process has finite length.

Player IT wins

Player I wins

UE vz UE 7. o
(B, %) 1 (E, &) 1
: U active U active
(F\U) (F,U)
: throughout throughout
(E,¥) | (E, W) |

Player IT wins

def

Player I wins

def

U=vZd U=upz. &
(Ek’ U) (Ek’ U)
(E;:U0) 1 (£, U) 1
: U active U active
(En,U) (En,U)
: throughout : throughout
! !

Fig.22. Revised repeat winning conditions

A strategy is again a set of rules which dictates how a player should move,



and it is winning if the player wins every play in which she uses it. For each
game (F,®) one of the players has a winning strategy, which is again history
free.

Theorem 1 E |=y & iff player I has a winning strategy for (E, ) relative to
V.

When F is a finite state process let |E| be the number of processes in P(E),
and let |®| be the size of @ (the number of symbols within it). There are at most
|E| x |@| different configurations in any game play (up to renaming of constants).
This means that any play of (£, ®) has length at most 1 + (|E] x |®]).

Example 1 A case where game playing is shorter is example 3 of section 4.1.
Let D -2 D', D' <% D and ' - 0, and let ¥ be uY. vZ. [a](((b)ttVY) A Z).
Player I’s winning strategy for (D', %) is the same as in that example. The play
proceeds:

(D', w) (D, U) (D, vZ. [a)(({(b) etV U) A Z)) (D', V)
(D, [a) (b)Yt v U) AV)) (D, (b6t VU) A V) (D, (bt vV )

At this configuration player II has a choice. If she chooses the first disjunct
she then loses because there is not a b transition from D. Otherwise the play
proceeds:

(D,U)(D,vZ.[a)({(t)tt v U) A 2)) (D, V)
(D, [a)((bYst vV U) AV)) (D, (bt VU) AV (D', V)

There is now a repeat configuration (D', V). Consider the sequence of formulas
in this game cycle, between and including these identical configurations:

V [a](({(b)st VU)AV) ((b)st VU)AV (b)tt VU U
vZ [al((Btt VU)ANZ) [a]l(((Btt VU)AV) ((b)tt VU)AV V

The constant V is not active throughout this sequence (because it is not active
in the formula vZ.[a](((b)tt V U) A Z)). However U is active throughout and
also occurs there, and because it abbreviates a least fixed point formula player
I is the winner. d

A tableau proof system was introduced in section 4.2 in such a way that a
successful tableau concretely represents a winning strategy for player IT (when
the game process is finite state). Given the refinements above to game playing
we now redefine this tableau proof system. The only change to the rules is that
when a fixed point formula is met again the same constant is reintroduced, new
constants are only introduced for fixed point formulas that have not been met
before.

To test whether E has the property ¥ one tries to build a successful tableau
for E Fy W which is a finite proof tree whose root is labelled with this sequent.
The leaves have to be successful as defined in section 4.2, except for the case of
termination because of repetition. The new conditions for terminating through
repetition are:



def : def

U=vZ® : U= puz o
Erw 7 Erv 7
: U active U active
FrU FEU
: throughout throughout
Erw | Ervw |
Successful Unsuccessful

Again it is at this point that we distinguish in the proof theory between the
two kinds of fixed points, as they are not differentiated by the rules earlier. As
before a successful tableau for F F @ expresses player II's winning strategy for
the game (E, @) and is therefore a proof that E has the property &.

Proposition 1 If Ety @ has a successful tableau then F =y &.

Example 2 The tableau proof that D satisfies @ = vZ. uY. [a](({b)ttAZ)VY)

when D - D' %~ D and D' -2 0 is given in figure 23. This proof is shorter
than the previous proof in figure 21. As U, a maximal fixed point constant, is
active throughout the cycle from D F V to D F V and occurs within it the
tableau is successful. d

The tableau proof system presented here is again complete for finite state
processes. This is again a consequence of the game characterization of satisfac-
tion.

Proposition 2 If E is a finite state process and E |=y @ then E Fy & has a
successful tableau.

4.4 Game graphs and algorithms

Assume that E is a finite state process. The game graph for (E,®) relative
to V is the graph representing all possible plays of the game (E,®), of the
previous section, modulo a canonical means of choosing constants. The vertices
are pairs (F,¥), configurations of a possible game play, and there is a directed
edge between two vertices v; — vy if a player can make as her next move v,
from vy. Let G(E, @) be the game graph for (£, ®), and let |G(E, §)| be its vertex
size which we know, from the previous section, is no more than |F| x |®|. The
complexity of property checking is NP N co-NP. This follows from the observation
that given a strategy for player II or player I it is straightforward to check in
polynomial time whether or not it is winning: the technique in [29] is easily
convertible into game playing.
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DFU
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D'F(b)tt AT
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0Ftt  D'FuY [a]((B)tt AT)VY)

D'vV

D'+ [a((B)tt AT) V V)

DF({()ttAU) VYV

DRV

Fig. 23. A successful tableau for D+ @

We can easily ensure that game playing must proceed to infinity by adding
extra moves when a player is stuck (and removing the redundant repeat ter-
mination conditions 3 and 3’ of the previous section). The resulting game graph
is then an alternating automaton: the and-vertices are the configurations from
which player I proceeds and the or-vertices are those from which player II moves,
and the acceptance condition is given in terms of active constants. See [10] which
directly uses alternating automata for property checking.

An important open question is whether model checking modal mu-calculus
formulas can be done in polynomial time (with respect to |E|x|®]). One direction
for research is to provide a finer analysis of successful strategies, and to be able
to describe optimizations of them. New insights may come from the relationship
between the games developed here and other graph games where there are such
descriptions.

The property checking game can be (easily) abstracted into the following
graph game. A game is a graph with vertices {1, ..., n} where each vertex i has
two directed edges ¢ — j; and ¢ — js. Each vertex is labelled I or II. A play is
an infinite path through the graph starting at vertex 1, and player I moves from
vertices labelled I and player II from vertices labelled II. The winner of a play is
determined by the label of the least vertex ¢ which is traversed infinitely often:
if 7 1s labelled I then player I wins, and if it is labelled II then player II wins. A



player wins the game if she has a winning strategy (which again is history free).
For each game one of the players has a winning strategy. Notice that this graph
game is described without mention of property checking.

Simple stochastic games [26] are graph games where the vertices are labelled
I, IT or A (average), and where there are two special vertices I-sink and II-sink
(which have no outgoing edges). As above each I, IT (and A) vertex has two
outgoing edges. At an average vertex during a game play a coin is tossed to
determine which of the two edges is traversed each having probability % More
generally one can assume that the two edges are labelled with probabilities of
the form £ where 0 < p < ¢ < 2™ for some m, as long as their sum is 1. A game
play ends when a sink vertex is reached: player II wins if it is the II-sink, and
player I otherwise. The decision question is whether the probability that player
IT wins is greater than % It is not known whether this problem can be solved in
polynomial time, although in [26] it is shown that it does belong to to NPNco-

NP. In [48] a “subexponential” (QO(ﬁ)) algorithm is presented, which works by
refining optimal strategies. A polynomial time algorithm for simple stochastic
games would imply that extending space bounded alternating Turing machines
with randomness does not increase the class of languages that they accept.

Mark Jerrum noted that there is a reduction from the graph game to the
simple stochastic game. The idea is to add the two sink vertices, and an average
vertex il for each vertex ¢ for which there is an edge j — ¢ with 7 > ¢. Each
such edge j — ¢ when j > ¢ is changed to j — ¢1. And the vertex il has an
edge to 7, and to I-sink if ¢ is labelled I or to II-sink otherwise. With suitable
rational probabilities on the edges, player Il has a winning strategy for the graph
game iff she has one for the simple stochastic game.

4.5 Generalizing tableaux

We have presented characterizations of when a process has a temporal prop-
erty using games. We also developed tableau proof systems for verifying that
processes have properties. However, a successful proof is only guaranteed in the
case that a property holds of a finite state process. We would like a more gen-
eral proof technique that also allows us to show properties of processes that are
infinite state. Even in the finite state case a more general proof method may be
useful, as a tableau proof may become too unwieldy because of its size.

There are various classes of infinite state system. Process definitions may
involve explicit parameterization: examples include the counter C%; and register
Reg,; of section 1.1, and the slot machine SM,, of section 1.2. Each instantiation
of these processes is itself infinite state and contains the other family members
within its transition graph. However the parameterization is very useful as it
reveals straightforward structural similarities within these families of processes.

Another class of processes that is infinite state is entirely due to the presence
of data values. The protocol of section 1.2 is a paradigm example. However there
are different degrees of involvement of data within these processes, depending
on the extent to which data determines future behaviour. At one extreme are



examples such as the Protocol which pass data items through the system ob-
livious of their particular values. A number of authors has identified classes of
processes which are in this sense data independent. At the other extreme are
systems such as T'(¢) of section 1.1 where future behaviour strongly depends on
the value ¢. In between are systems such as the register where particular values
are essential to change of state.

A third class of processes is infinite state independently of parameterization.
An instance is the counter Count of section 1.5. Here the system evolves its
structure as it performs actions. In certain cases processes that are infinite state
in that they determine an infinite state transition graph are in fact bisimulation
equivalent to a finite state process. A simple example is that C e, | b.C is
bisimilar to ¢’ % 4.C” + b.C". Another interesting subclass of infinite state pro-
cesses are those for which bisimulation equivalence is decidable. Two examples
are the context free processes and the basic parallel processes [23, 22].

A final class of systems is also parameterized. However for each instance of
the parameter the system is finite state. Two paradigm examples are the buffer
Buff,, and the scheduler Sched,,, both from section 1.4. Although the techniques
for verification of temporal properties apply to instances they do not apply to
the general families. In such cases we would like to prove properties generally, to
show for instance that for each n > 1 Sched,, is free from deadlock. The proof
of this requires exposing structure that is common to this whole family.

In this section we present a simple generalization of satisfaction, and examine
how it can be used to provide a tableau proof system. The full story of this proof
system (presented with Julian Bradfield in [18]) continues into the next section.

A straightforward generalization of satisfaction is as a relation between a set
of processes and a formula. We use the same relation |=y for this extension. If
P is a transition closed set with £ C P then

ERv o iff £C o}

As before we write £ = @ when there is no valuation, or when the valuation can
be understood from the context.

Example 1 The family of counters of figure 4, {Ct; : i > 0}, has the prop-
erty [up]([round]ff A[up](down)(down)tt). The following proof uses the expected
inductive definition of £ |= @ (which is discussed below):

{Ct; : i > 0} |= [up]([round]ff A [up](down)(down)tt)
iff {Ct; : i > 1} |= [round]ff A [up](down)(down)tt
iff {Ct; : i > 1} |= [round]ff and {Ct; : i > 1} |= [up](down)(down)tt
iff {Ct; : i > 1} |= [up](down)(down)tt
iff {Ct; : i > 2} |= (down)(down)tt
iff {Ct; : i > 1} = (down)tt
iff {Ct; : i>0} Ett

This proof is more direct than appealing to induction on process indices. O



Example 1 utilizes some obvious properties of satisfaction between sets of
processes and formulas. Below are necessary and sufficient conditions for all the
connectives using a little notation which we shall explain.

£ ':v DL ANDH M £ I:v @, and &£ I:V &y

£ ':v @1 \/@2 iff 351,82. ((:1 Ugg =& and 81 ':v @1 and ((:2 'Zv @2
EEVIKI® ffK(E)Ev®

E Ey (K)® iff there is a choice function f: & — K(&) and f(€) Ey @
by oZo iff €y 0loZ.0/7)

The case of conjunction is the most straightforward. Disjunction is more com-
plex. When & [y &1 V &, the set £ can be spit into two subsets £ and & with
& |E @;: note that one of these sets could be empty?*. For the modal cases we
utilise notation. If £ is a set of processes and K is a set of actions then K(&) is
the set {F : 3F € £3a € K. E -2 F}, which is the set of processes reachable
by K transitions from members of £. In example 1 {up}({Ct; : i > 0}) = {C%; :
i > 1}. The set & has the property [K]® iff K(&) satisfies @. For the diamond
modality we appeal to functions. A function f: & — K(&) is a choice function
provided that for each E € £ there is an a € K with the feature that £ - f(E).
When f is such a function we let f(€£) = {f(E) : E € £}. The set & satisfies
(K)® just in case there is a choice function f : £ — K (&) where f(£) satisfies
&. In example 1 there is the function f: {Ct;; i > 2} — {down}({Ct; ; i > 2})
given by f(Ct;41) = Ct;, which justifies one of the proof steps. This leaves the
difficult cases of the fixed points. We shall make use of the principles developed
in previous sections which appeal to games. Note however that the fixed point
unfolding principle holds for the generalized satisfaction relation.

We wish to extend the tableau proof system of section 4.2 to encompass sets
of processes having a property. Therefore we extend the basic sequent E Fy @
to £ Fy @, and as usual we drop the index V wherever possible. Each proof rule
has one of two forms:

EFo EFo
FEd Fib&1 Fok @y

possibly with side conditions. As in section 4.2 the premise sequent £ F @ is the
goal to be achieved (that every process in £ has the property @) while the con-
sequents are the subgoals. The tableau proof rules are presented in figure 24. As
we are generalizing the proof system of section 4.2 new constants are introduced
as fixed point formulas are met: this makes termination less complex than if
we generalized the proof system of section 4.3 where constants are reintroduced.
There is one new kind of rule, a structural rule Thin, which allows the set of
processes in a goal sequent to be expanded. Clearly, the rules are backwards
sound.

To show that all the processes in £ have the property @ relative to V, one tries
to achieve the goal £ Fy @ by building a successful tableau. As before a successful

2% By definition 0 =y @ for any &.
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Fig. 24. Tableaux rules

tableau is a finite proof tree whose root is labelled with this initial sequent,
and where all the leaves are labelled by sequents that are successful. Sequents
labelling the immediate successors of a node labelled F + ¥ are determined
by an application of one of the rules, either by Thin or by the rule for the
main connective of ¥. The crucial missing ingredient is when a node counts as
a terminal node.

The definition of a leaf in a tableau is, as we shall see in the next section,
underpinned by the game theoretic characterization of satisfaction. A tableau
now captures a whole family of games. For each process in the set of processes
on the left hand side of a sequent determines a play from it and the property
on the right hand side. A node n labelled by the sequent F - ¥ is terminal in
the circumstances described in figure 25. Clearly a node labelled with a sequent

Successful terminal Unsuccessful terminal
1. ¥ =tt or 1. ¥ = ff or

¥ =2Z2and F C V(%) U =2Zand FZV(Z)
2.F =0 2'. ¥ = (K)® and for some

FeF. K{F}) =0

33U =Uand U vZ dand 3/ ¥=0Uand U 47 & and
there is a node above n there is a node above n

labelled £ F U with £ 2 F labelled £ F U with F 2 &

Fig. 25. Tableau terminals

fulfilling 1 or 2 is successful, and similarly any node labelled with 1’ or 2’ is not



true. The other two conditions are generalizations of those for the proof system

def def

UEvz.0 © UZuz.d¢
EDF . FDE
ERU ERU
FrU FrU
Successful Unsuccessful

Fig.26. “Repeat” termination conditions

of section 4.2, and are pictured in figure 26. The justification for the success
of condition 3 can be seen by considering any infinite length game play from a
process in £ with respect to the property U which cycles through the leaf 7 - U.
As F C & the play continues from this companion node. Such an infinite play
must pass through U infinitely often, and is therefore a win for player II.

A successful tableau for £ -y @ is a finite proof tree all of whose leaves are
successful. A successful tableau only contains true leaves.

Proposition 1 If £ty @ has a successful tableau then £ =y @.

However as the proof system stands, the converse is not true. A further termin-
ation condition is needed for least fixed point constants. However this condition
is a little complex and so we delay its discussion until the next section. Instead
we present various examples that can be proved without it. In the following we
write £ F @ instead of {E} F &.

Example 2 It is not possible to show that Cnt has the property vZ. (up)Z using
the tableau proof system of section 4.2, when Cwnt is the infinite state process,

Cnt < up.(Cnt | down.0). There is a very simple proof within this more general
proof system. Let Cntg be Cnt and let Cnt;11 be Cni; | down.O for any i > 0.

Cnt b v 7. (up)Z
{Cnt; :i> 0}k vZ. (up)Z
{Cnt; 1 i>0 kU
{Cnt; : i >0} F (up)U
{Cnt; : i>1}FU

Notice here the essential use of the Thin rule, and the simple condition for
termination. The choice function which we have left implicit maps each Cni; to
Cnti+1. |



Example 3 The slot machine in figure 10 is infinite state. The safety property,
that the machine never pays out more than it has in its bank as described in
example 2 of section 3.8, has the following tableau where the falsity of ) indicates
that the slot machine owes money:

(SM, i n>0}FvZ.QA[-)Z
EFvZ.QA[-]Z
ERU
EFQA[-U
EFQ EF[-U

ERU

Here the Thin rule is used to enlarge the set of slot machines to the set £ which

is P(SM,). O

The proof system is also applicable to finite state examples, providing a much
more succinct presentation of player II’s winning strategy for a game.

Example 4 Recall the level crossing of figure 7. Its safety property is expressed
as vZ.([tcross|ff V [ccross|ff) A [—]Z. Let @ be this formula. We employ the
abbreviations in figure 8, and we let £ be the full set {Ey,...FE11}. Below is a
successful tableau showing that the crossing has this property.

Crossing = @

EFD
ERU
EF ([tcross|ff Vv [ccross|ff) A [—|U
E & [tcross|ff V [ccross|ff EF[-]U
E—{FEs,E;} I [tcross|ff & — {F4, Es}t [ccTross|ff  EFU
0Fff O ££
Again notice the essential use of the Thin rule at the first step. d

Example 5 In example 2 of section 4.2 we noted how similar the two subtableaux
T'1 and T2 are. These can be amalgamated as follows (where the same abbrevi-
ations are used):



{Veny, Ven;} HU
{ Veny, Veni} = [2p]® A [-]U
{Veny, Ven;} - [2p]® {Veny, Ven; } + [-]U
h+o {Veny, Ven; } + [-]U
{cp.Ven,c;. Ven} FU
{cp.Ven,ci. Ven} F [2p]® A [-]U
{cp.Ven,ci. Ven} F [2p]®  {cp.Ven,c;. Ven} F [-]|U
0+ Ven U

The terminals have changed slightly. O

4.6 Well foundedness

The proof system of the previous section is not complete. An example for which
there is not a successful tableau is given by the following cell, C Lt in(z).B;

when z : N and B, 44 et down.B,,. This cell has the property of eventual ter-
mination, uZ.[—]Z. The only possible tableau for C' - pZ.[—]Z up to renaming
the constant, and inessential applications of Thin is:

CruZ.[-2
CrU
CF[-)U
(1) {Bi :i>0}FU
(2) {B; : i>0}F [-]U
(3){B; :i>0}FU

The final node (3) is terminal because of the node labelled (1) above it, and it
is unsuccessful because U is a least fixed point constant. However any play of
the game (C, uZ.[—]Z) is won by player II. One solution to the problem is to
permit induction on top of the current proof system by showing that each B;
has the property U. However we would like to avoid explicit induction principles.
Instead we shall present criteria for success which captures player II’s winning
strategy. This requires one more condition for termination.

The additional circumstance for being a leaf node of a proof tree concerns
least fixed point constants. A node n labelled by the sequent F F U is also a
terminal if it obeys the (almost repeat) condition of figure 27. This circumstance
is very similar to condition 3 of the previous section except it is with respect
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FCE
EFU
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Fig.27. New terminal

to a least fixed point constant, and it is also similar to 3’ except that the set
of processes F at the leaf is a subset of £. Not all nodes that obey this new
condition are successful. The definition of success (taken from [18]) is intricate,
and requires some notation.

A leaf which obeys condition 3 of being a terminal from the previous section
or the new terminal condition above is called a o-terminal, where o may be
instantiated by a v or pu depending on the kind of constant involved. Suppose
node n’ is an immediate successor of n, and n is labelled by £ F @ and n’ is

labelled &'+ &'.

n: -
n: &ro

A game play proceeding through (E,®) where E € £ can have as its next
configuration (E’,®") where E' € £ provided the rule applied at n is not Thin.
Which possible processes E' € £ can be in this next configuration depend on
the structure of @. This motivates the following notion. We say that E' € £ at
n' is a dependant of £ € £ at n if

— the rule applied tonis A, V, U, ¢Z, or Thin, and £ = E’, or
— the rule is [K] and £ % E’ for some a € K, or
— the rule is (K), and E' = f(E) where f is the choice function.

All the possibilities are covered here. An example is that each B; at node (2) in
the tableau earlier is a dependant of the same B; at node (1), and each B; at
(1) is a dependant of C' at the node directly above it.

Assume that the companion of a o-terminal is the most recent node above
it which makes it a terminal. (There may be more than one node above a o-
terminal which makes it a leaf, hence we take the lowest one.) Next we define
the notion of a trail.

Definition 1 Assume that node ny is a py-terminal and node nj is its compan-
ion. A trail from process Fy at nj to Fj at ny is a sequence of pairs of nodes
and processes (n1, E1), ..., (nk, Bx) such that for all ¢ with 1 < ¢ < k either

1. E;41 at nj41 is a dependant of F; at n;, or



2. n; is the immediate predecessor of a o-terminal node n’ (where n’ # ng)
whose companion is nj for some j : 1 <j <14, and nj43 = nj and ;4 at n’
is a dependant of F; at nj.

((1), B2) ((2), B2) ((3), B1) is a simple trail from Bs at (1) to By at (3) in the
tableau earlier. In this case By at (2) is a dependant of By at (1), and B
at (3) is a dependant of By at (2). Condition 2 of Definition 1 is needed to
take account of the possibility of embedded fixed points as pictured in figure 28.
A trail from (n1, E1) to (nk, E}) may pass through node nj repeatedly before

n ErRU

n; &FHV

: n F'+H&
ng FHU n ALV

Fig.28. Embedded terminals: F C £ and F; C &;.

continuing to ny. In this case ny is a p-terminal but n’ may be either a y or a
v-terminal. In fact node nj here could be n; with ny and n’ both sharing the
same companion. This can be further iterated when there is another o-companion
along the path from nj to n; and a further leaf n”, and so on. Note that there
is an intimate relationship between the sequence of processes in a trail and a
sequence of processes in part of a game play from from the companion node to
the terminal.
Each companion node n of a p-terminal induces a relation [>y:

Definition 2 F >, I if there is a trail from E at n to I at a p-terminal whose
companion is n.

We now come to the definition of a successful p-terminal.

Definition 3 A p-terminal whose companion node is n is successful if there is
no infinite “descending” chain Ey >y 1 Dg - - ..

Success means that the relation <1y, induced by the companion of a p-terminal is
well-founded. This precludes the possibility of an infinite game play asssociated
with a tableau which cycles through the node n infinitely often.

A tableau is successful if it is finite and all its leaves obey one of the conditions
for being a successful terminal (either 1, 2 or 3 from the previous section, or
that of being a successful p-terminal). The tableau technique is both sound and
complete for arbitrary (infinite state) processes. Again the result is proved using



the game characterization of satisfaction.
Theorem 1 &y @ has a successful tableau iff € =y &.

Example 1 The tableau at the start of this section is successful. The only
trail from B;y1 at (1) to (3) is ((1), Bi+1) ((2), Bit+1) ((3), B;), and therefore
Biy1 >1) Bi.

Suppose we amend the definition of B;y1 to Bjy1 def down.B; +up.B;ys. Each
B;4+1 has the extra capability for performing up. An attempt to prove that C
eventually terminates yields the same tableau as at the beginning of the section.
However this tableau is now unsuccessful. There are two two trails from B;;q at
(1) to (3): (1), Big1) ((2), Bir1) (3), B:) and (1), Big1) ((2), Bigr) (3), Big).
Hence, both B;41 >y Bi and By >(1) Bita. Consequently there is a variety
of infinite decreasing sequences from B;y; such as B4 D>(1) Bit2 1) Bit1 .- -
|

Example 2 The liveness property of the crossing subject to the assumption of
fairness of the signal, as we saw in example 3 of section 3.8, is expressed by the
following open formula vY.[car]¥; A [-]Y, where ¥ is

puX.vY1.(QV [—ccross|(vYa.(RV X) A [—CcEoss|Ys)) A [—ccToss|V)

and where ) holds when the crossing is in any state where Rail can by itself
perform green and R holds in any state where Road can by itself perform up. We
employ the abbreviations in figure 8, and we let £ be the full set {Fy, ..., E11}.
The states that @ holds at are Fy, E3, Eg and E1o and R holds at Fq, Fj,
E7, and E7;1. A proof that the crossing has this property is given in stages in
figure 29.

In this tableau there is one p-terminal, labelled (1) whose companion is (c).
The relation [>. is well founded as we only have: Ey > F4, F4 >c Eg and
FEs3 > Eg. Therefore the tableau is successful. O

Example 3 The verification that the slot machine has the weak liveness prop-
erty that a million pounds can be won infinitely often is given by the following
successful tableau:

{SM,, : n >0} FvY.uZ (win(10%))Y v (=) Z
EFvYuZ (win(10%)Y v (=) Z
ErU
EF pZ (win(10°)U v (=) Z
(1) EFV
(2) £F (win(10°)U v (=)V
& F (win(10°)U (3) &+ (—)V

EFU (4) &,V




{Crossing} F vY.[car]¥; A[-]Y

ErvY[car]¥h A[-]Y

ERU

EF [car]¥ A [-]U

&+ [car]¥h EF[-U

{Er,Es,Er, Enn} F ERU

T1

&1 ={E1, B3, By, Be, E7, Eni }

11

&Y
(e) &4V

£+ w1 .(Q V [~ccToss|(vYs. (R V V) A [—TeToss]Ya)) A [—ccToss)Y

& UL

& F QV [—ccross|(vYz.(RV V) A [—Ccross|Ys) A [—ccross|Ua

& F QV [—ccross|(vYs.(RV V) A [—Ccross)Ys) & F [—ccross|U;

{E;,Es}FQ T2 S U,

12

{E1, E4, E7, E11} F [—ccross|(vY2.(R V V) A[—Ccross|Yz)

{E1, Es, By, Eg, E11} FvYo (RV V) A[—Ccross|Ys

{E1, Es, Ey, FEg, E7, E11} F vYa (RV V) A[—CcToss|Ys

{E1,Es,Es,Eg, E7, 11} F Us

{E1,Es, Es, E6, E7, E11} - (RV V) A [—ccToss|Us

{E\,E3,E4,Fs,E7, E11} F RVV {F1, Es, Es, Fg, E7, E11} - [—ccToss|Us

{E1,Es,E7,E1i}F R (1) {Es, Eg}FV {E\,Es,Es, Eg, E7, E11} F Us

Fig.29. Liveness proof for the Crossing



€ is the set of all derivatives. The vital rules in this tableau are the disjunction at
node (1), where &; is exactly those processes capable of performing a 5(106)
action, and &, is the remainder; and the (K) rule at node (3), where f is defined
to ensure that & is eventually reached: for a process with less than 10° in the
bank, f chooses events leading towards loss, so as to increase the amount in the
bank; and for processes with more than 10°, f chooses to M(IOG). The
formal proof requires partitioning £; into several classes, each parametrized by
an integer n, and showing that while n < 10°, n is strictly increasing over a cycle
through the classes; then when n = 10°, f selects a successor that is not in &,
and so a chain from Fy through nodes (1), (2), (3), (4) terminates. d

Example 4 Consider the following family of processes for ¢ > 1 from section 1.1:
T(i) € if even(i) then out(i).T(i/2) else out(i).T((3i + 1)/2)

If T(7) for all i > 1 stabilizes into the cycle T(2) () T(1) om(l) T(2) then the
following tableau is successful, and otherwise it is not. But which of these holds
is not known!

{T(i) : ¢ > 1} F pY. (out(2))tt V [-]Y
{T@) :i>1}FU
{T() « i > 1} F GuE(2)ss v [-)U
T(2)F (out(2))tt {7(i) : i >1 Ai#2}F[-]U
T(1)Ftt {I'@E@) :i>1}FU

The problem is that we dont know if the relation induced by the companion of
this leaf is well-founded. d

5 Concluding Comments

In previous sections we used modal logic and modal mu-calculus for analysing
properties of processes. We also noted the close relationship between bisimilarity
and having the same properties. Some of the techniques mentioned, especially in
the case of finite state processes, are implemented in the Edinburgh Concurrency
Workbench?®. Another tool is the infinite state model checker for Petri nets based
on tableaux, described in [16].

An important topic which we have not discussed is to what extent verification
can be guided by the theory of processes. Game playing and the tableau proof
rules are directed by the logical structure of the property. A simple case of where
the theory of processes may impinge is the following proof rule that can be added
to the tableaux proof systems of sections 4.2 and 4.3 when @ is a closed formula.

2> Which is freely available by emailing Perdita.Stevens@dcs.ed.ac.uk, or from the
WWW, http://www.dcs.ed.ac.uk/packages/cwb/index.html.



Er-o
F~FE FEFQ

This is justified because as we saw in section 3.7 bisimulation equivalence pre-
serves temporal properties. Moreover if @ belongs to weak modal mu-calculus
then we only need the subgoal F' &~ FE. Use of this rule could appeal to the
theory of bisimulation, and techniques for minimizing process descriptions. Al-
ternatively it could appeal to the equational theory of processes.

Process behaviour is chronicled through transitions. But processes also have
structure, defined as they are from combinators. To what extent can process
properties be defined without appealing to transition behaviour, but instead to
this algebraic structure? The ascription of boolean combinations of properties to
processes does not directly depend on their behaviour: for instance, F satisfies
@ V ¥ provided it satisfies one of the disjuncts. Consequently it is the modal
(and fixed point) operators that we need to concern ourselves with, how algebraic
structure relates to them. Some simple cases are captured in the following lemma.

Lemma 1 i. ifa ¢ K then a.F | [K]|® and a.E [ (K)®, ii. ifa € K then
a.F £ K]0 if EfE &, iii. ifa € K then a.F = (K)® if E | &, iv.
SHE; i€ I} E[K]® iff forallj€ 1. E; | [K|®, v. Y {E; i€ I} | (K)o
iff for some j€ 1. E; = (K)®, vi. if PY E and E =& then P &.

Restriction \J is dealt with by defining its effect on formulas @ as &\J
inductively as follows where J# is the set J U J:

@ANUNT = O\TAP\J  (DVE)N\JT = S\JV\J
([K])\J = [K — J#](@\]) (K)®)\J = (K — J#)(@\])
vZ.O\J =vZ.(®\J) pZ.&\J = pZ. (6\J)

and where ®\J = & when & is Z, tt, or £f. The operator \J on formulas is an
inverse of its application to processes, F\J |= @ iff ' |= $\J. Similar inverse
operators on formulas can be defined for renaming [f] and hiding \\J. This forms
the basis for a notion of abstraction which can be used in some cases to simplify
verification, see [20].

Using these results we can extend the tableau proof rules (and game playing)
by adding rules such as:

E+F+ [K|® E\\J I &
EF[K]®¢ Fro EF o\\J

The harder question is how to deal with parallel, some proposals can be found

in [63, 45, 2, 3].
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