DD2452 Formal Methods

Introductory Lecture

Lecture Outline

- 1. The lecturer
- 2. Introduction to Formal Methods
- 3. Course syllabus
- 4. Course objectives
- 5. Course organization

1. Lecturer

- Name: Dilian Gurov
- E-mail: <u>dilian@csc.kth.se</u>
- Phone: 08-790 81 98 (office)
- Visiting address: Osquars backe 2, floor 4, room 4417
- · Research interests:
- Analysis of program behaviour
- Correctness: logics, compositionality

2. Formal Methods

Formal methods:

collection of formal notations and techniques (i.e. based on discrete mathematics and mathematical logic) for modelling and analysis of program behaviour.

• Common goal: The design of *correct* systems.

Why Formal Methods?

- Only formal methods can capture correctness *precisely*. Basis for *tools*.
- But: formal techniques are expensive
- Most needed for:
 - safety-critical systems
- commercially-critical systems (security)
- Most succesful for: "small" systems
 - embedded systems
 - communication protocols

Formal Verification

Two possibilities:

- correctness by design: transformation
- establishing correctness: verification
- Three ingredients:
 - -model M M ψ
 - specification
 verification
 ⊨ M≈.

Main Challenge

- Real systems are large and complex
- Only restricted problems are *decidable*, i.e. algorithmically solvable
- Scalablity requires efficient solutions, i.e. *tractability*

What do we do?

Abstraction

- Key technique for handling complexity! separation of concerns; building models
- Key questions:
 - What are the important properties?
 - What is the "right" abstraction level?
 - How does the abstract model relate to the concrete system? ("modelling gap")
 - How to interpret the results of the analysis?

Main Schools

- · Hoare Logic
- Process Algebra
- Model Checking
- Theorem Proving

We will focus on the first and the third of these approaches.

3. Course Syllabus

Part I. Hoare Logic and Program Verification

Goal:	Correctness of data manipulation
Models:	Source code (Java)
Specs:	Hoare Logic (JML)
Method:	Proof tableaux; VCG + ATP
Tool:	ESC/Java2

Course Syllabus

Part II. Temporal Logic and Model Checking

Goal:Correctness of state sequencesModels:PromelaSpecs:Temporal logic formulas (LTL)Method:Model checkingTool:SPIN

4. Course Objectives

- **Aim**: provide working familiarity with main methods and tools, in theory and in practice.
- Grading: to pass the course, a student has to demonstrate the ability to apply the methods discussed in the course; for the highest grade he/she has also to be proficient in the theoretical foundations of these methods.

Course Objectives

After the course, you should be able to:

- 1. Independently select a suitable modelling approach for a given problem;
- 2. Argue informally and formally for the soundness and limitations of the chosen approach;
- 3. Identify, specify and verify important system properties using suitable automated tools;
- 4. Correctly interpret and evaluate the results of the analysis.

5. Course Organization

- 17 one-hour lectures/tutorials: mixed
- 2 lab sessions: for reporting only!
- 1 written exam: 5 hours, open-book
- Course web page: <u>www.csc.kth.se/DD2452/form09/</u>
- Course board: sv. "kursnämnd" volunteers?

Course Literature

- Course book:
 "Logic in Computer Science"
 by Huth and Ryan (see Kårbokhandeln)
- Additional material: on the web page don't print without need!

Labs

- ESC/Java2 lab: correctness of an ADT implementation
- SPIN lab: correctness of a communication protocol

Tools

- ESC/Java2: module add escjava escjava2
- SPIN lab: module add spin xspin