Hoare Logic for Concurrent Programs
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Parallel While Programs
Extend while language of previous lecture:

cu=skip|x:=e|c;c|ifethencelsec|whileedoc]|
cobegin ¢ || ¢ coend

Shared memory!

Issues of interference, atomicity and nondeterminism must
be taken into account, e.g.

y i=X ; X 1=y +1
Vs x,y) = (x + 1,%x)
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Transition Semantics

(c,,0) > 0
(cobegin ¢, || ¢, coend,0) — (C,,0")

(c,,0) » 0
(cobegin ¢, || ¢, coend,0) — (c,,0")

(¢,,0) = (¢,'.0")
(cobegin ¢, || ¢, coend,0) — (cobegin c,’ || ¢, coend, d’)

(c5,0) = (c,',0")
(cobegin ¢, || ¢, coend,0) — (cobegin ¢, || ¢,’ coend, 0’)

Rule for cobegin ... coend

Owicki-Gries proof rule:

{odci vt {p}c {w}
{eoA@lellco{w AWy}

Side condition:

The proofs of {¢,} ¢, {Y,} and {®} ¢, {Y,} must be
interference-free

Not compositional!
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Interference Freedom Example
Let a proof outline A of {¢g} ¢ {{} be given. P: cobegin

A critical formula of A is either Y or a formula ¢ appearing
immediately before some statement in A

Let proof outlines A, of {@,} ¢, {Y,} and A, of {¢,} c, {Y,} be given.

A, does not interfere with A, if for every critical formula @ of A, and
triple {@,} ¢;” {,} appearing in 4;, {9 A @'} ¢, {}.

Need consider only those c,’ that are assignments

Then A, and A, are interference free, if A; and A, do not interfere with
each other
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P,: bal := bal + dep
I p,: if bal > 1000
then credit =1

else credit := 0
coend
Proof goal:
{bal = B A dep > 0}
P

{bal = B + dep A dep >0 A (credit = 1 — bal > 1000)}

2005 Mads Dam IMIT, KTH 6 2G1516 Fommal Methods




Proof of Example

1. Build proof outline A, of
{bal = B A dep >0} P, {bal =B+ dep A dep > 0}
2. Build proof outline A, of
{true} P, {credit = 1 — bal > 1000}
3. Prove that A, and A, are interference-free
4. Conclude by rule for cobegin ... coend
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Proof Outline A,

{bal = B A dep > 0}

{bal + dep = B + dep A dep > 0}
bal := bal + dep

{bal = B + dep A dep > 0}

Critical formulas:
— @, bal+dep=B+depAdep>0
— @, bal=B+depAdep>0
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Proof Outline A,

{true} Critical formulas:
if bal > 1000 then * @, 1=1— bal > 1000
{true A bal > 1000} * @, 0=1— bal>1000
{1=1 — bal > 1000} *  @g credit=1— bal > 1000
credit ;=1
{credit=1 — bal > 1000}
else

{true A bal <= 1000}
{0=1 — bal > 1000}
credit:= 0
{credit = 1 — bal > 1000}
fi;
{credit=1 — bal > 1000}
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Proving Interference Freedom

Need to prove, for each i € {1,2} and j € {1,2,3}:
L {@ A @ }oredit=1{g}
2. {@; A @} credit:=0{g, }
3. {®; A @} bal:=bal + dep {¢,}

A total of 7 proof goals
Triples of type 1 and 2 hold trivially since no @,; mentions credit
The type 3 goal {g,, A ¢, ;} bal := bal + dep {@,} is trivially valid

Remains to prove:
— {(1=1 — bal > 1000) A bal + dep = B + dep A dep > 0} bal := bal +
dep {1=1 — bal > 1000 }
— {(credit=1 — bal > 1000) A bal + dep = B + dep A dep > 0} bal := bal
+ dep {credit =1 — bal > 1000}
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Notes

If P, had been withdrawal
bal := bal —wdr
where wdr > 0 last step of proof would not have gone through

A program which never grants credit would satisfy the specification!

Would like postcondition of the form
(credit=1 — bal >1000) A (credit=0 — bal <= 1000)

But this would lead to violation of interference freedom. Why?
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Completeness and Compositionality

For completeness need auxillary variables, explicit new variables
which record state and history information

Compositional versions exists using "assumption-guarantee
reasoning”:

Fale F {0} P {4}

Meaning:

« Inan environment which always maintain formulas in I, invariant
« When starting in initial state satisfying ¢

« P will always maintain formulas in g invariant

« And if and when P terminates, g will hold

More info: De Roever et al: Concurrency Verification: Introduction to
Compositional and Noncompositional Methods, CUP 2001
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Auxillary Variables

Let c be a program and A a set of variables in ¢
A'is a set of auxillary variables of ¢ if
« Variables in A occurs only in assignments
So: Not in assignment guards or tests in loops or
conditionals
« If xe A occurs in an assignment
(Xg,eenXiy) == (B Ep)
then x occurs in E; only when x, € A
So: Variables in A cannot influence variables outside A

erase(c,A): ¢ with all assignments to auxillary variables
in A, and all assignments () := () erased

.

Auxillary Variable Rule

Proof rule:

g c{y}
{otc {w}

Side condition:

« There is a set A of auxillary variables of ¢ such that
¢’ = erase(c)

« P does not mention variables in A

P " 261515 Fomel etds P——— " 261515 Fomel etmds
Example Proof of Example
P: cobegin Proof outline A;:
N z = z : 1 {~done, A (—~done, — x = 0) A (done, — x = 1)}
coend (x,done,) := (x+1,true)
{done; A (—done, — x=1) A (done, — x = 2)}

Proof goal:

{x=0}P {x=2} Proof outline Ay:

This proof needs auxillary variables!

Idea: Add auxillary variables done,, done, to catch when
each of the assignments have been executed
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{—done, A (-done; — x=0) A (done; — x = 1)}
(x,done,) := (x+1,true)
{done,A (—done; — x=1) A (done; — x=2)}
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Proof of Example, lI
Exercise: Check that A, and A, are interference free
By the Owicki-Gries rule + rule of consequence we obtain
{x=0 A —done,; A —done,} P’ {x = 2}

where P’ is P with assignments augmented with auxillary
variables as on previous slide

By Hoare logic reasoning:
{x =0} (done,,done,) := (false,false) ; P’ {x = 2}

By the auxillary variable rule:
{x=0}P{x=2}
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