Hoare Logic for Concurrent Programs

Mads Dam

2005 Mads Dam IMIT, KTH 1 2G1516 Fommal Methods

Parallel While Programs
Extend while language of previous lecture:

cu=skip|x:=e|c;c|ifethencelsec|whileedoc]|
cobegin ¢ || ¢ coend

Shared memory!

Issues of interference, atomicity and nondeterminism must
be taken into account, e.g.

y i=X ; X 1=y +1
Vs x,y) = (x + 1,%x)

2005 Mads Dam IMIT, KTH 2 2G1516 Fommal Methods

Transition Semantics

(c,,0) > 0
(cobegin ¢, || ¢, coend,0) — (C,,0")

(c,,0) » 0
(cobegin ¢, || ¢, coend,0) — (c,,0")

(¢,,0) = (¢,'.0")
(cobegin ¢, || ¢, coend,0) — (cobegin c,’ || ¢, coend, d’)

(c5,0) = (c,',0")
(cobegin ¢, || ¢, coend,0) — (cobegin ¢, || ¢,’ coend, 0’)

Rule for cobegin ... coend

Owicki-Gries proof rule:

{odci vt {p}c {w}
{eoA@lellco{w AWy}

Side condition:

The proofs of {¢,} ¢, {Y,} and {®} ¢, {Y,} must be
interference-free

Not compositional!

2005 Mads Darm MIT, KTH p 261516 Fomal Metrods 2005 Mads Darm MIT, KTH 4 261516 Fomal Metrods
Interference Freedom Example
Let a proof outline A of {¢g} ¢ {{} be given. P: cobegin

A critical formula of A is either Y or a formula ¢ appearing
immediately before some statement in A

Let proof outlines A, of {@,} ¢, {Y,} and A, of {¢,} c, {Y,} be given.

A, does not interfere with A, if for every critical formula @ of A, and
triple {@,} ¢;” {,} appearing in 4;, {9 A @'} ¢, {}.

Need consider only those c,’ that are assignments

Then A, and A, are interference free, if A; and A, do not interfere with
each other

2005 Mads Dam IMIT, KTH 5 2G1516 Fommal Methods

P,: bal := bal + dep
I p,: if bal > 1000
then credit =1

else credit := 0
coend
Proof goal:
{bal = B A dep > 0}
P

{bal = B + dep A dep >0 A (credit = 1 — bal > 1000)}

2005 Mads Dam IMIT, KTH 6 2G1516 Fommal Methods

Proof of Example

1. Build proof outline A, of
{bal = B A dep >0} P, {bal =B+ dep A dep > 0}
2. Build proof outline A, of
{true} P, {credit = 1 — bal > 1000}
3. Prove that A, and A, are interference-free
4. Conclude by rule for cobegin ... coend

2005 Mads Dam IMIT, KTH 7 2G1516 Fommal Methods

Proof Outline A,

{bal = B A dep > 0}

{bal + dep = B + dep A dep > 0}
bal := bal + dep

{bal = B + dep A dep > 0}

Critical formulas:
— @, bal+dep=B+depAdep>0
— @, bal=B+depAdep>0

2005 Mads Dam IMIT, KTH 8 2G1516 Fommal Methods

Proof Outline A,

{true} Critical formulas:
if bal > 1000 then * @, 1=1— bal > 1000
{true A bal > 1000} * @, 0=1— bal>1000
{1=1 — bal > 1000} * @g credit=1— bal > 1000
credit ;=1
{credit=1 — bal > 1000}
else

{true A bal <= 1000}
{0=1 — bal > 1000}
credit:= 0
{credit = 1 — bal > 1000}
fi;
{credit=1 — bal > 1000}

2005 Mads Dam IMIT, KTH 9 2G1516 Formal Methods

Proving Interference Freedom

Need to prove, for each i € {1,2} and j € {1,2,3}:
L {@ A @ }oredit=1{g}
2. {@; A @} credit:=0{g, }
3. {®; A @} bal:=bal + dep {¢,}

A total of 7 proof goals
Triples of type 1 and 2 hold trivially since no @,; mentions credit
The type 3 goal {g,, A ¢, ;} bal := bal + dep {@,} is trivially valid

Remains to prove:
— {(1=1 — bal > 1000) A bal + dep = B + dep A dep > 0} bal := bal +
dep {1=1 — bal > 1000 }
— {(credit=1 — bal > 1000) A bal + dep = B + dep A dep > 0} bal := bal
+ dep {credit =1 — bal > 1000}

2005 Mads Dam IMIT, KTH 10 2G1516 Fommal Methods

Notes

If P, had been withdrawal
bal := bal —wdr
where wdr > 0 last step of proof would not have gone through

A program which never grants credit would satisfy the specification!

Would like postcondition of the form
(credit=1 — bal >1000) A (credit=0 — bal <= 1000)

But this would lead to violation of interference freedom. Why?

2005 Mads Dam IMIT, KTH 11 2G1516 Fommal Methods

Completeness and Compositionality

For completeness need auxillary variables, explicit new variables
which record state and history information

Compositional versions exists using "assumption-guarantee
reasoning”:

Fale F {0} P {4}

Meaning:

« Inan environment which always maintain formulas in I, invariant
« When starting in initial state satisfying ¢

« P will always maintain formulas in g invariant

« And if and when P terminates, g will hold

More info: De Roever et al: Concurrency Verification: Introduction to
Compositional and Noncompositional Methods, CUP 2001

2005 Mads Dam IMIT, KTH 12 2G1516 Fommal Methods

Auxillary Variables

Let c be a program and A a set of variables in ¢
A'is a set of auxillary variables of ¢ if
« Variables in A occurs only in assignments
So: Not in assignment guards or tests in loops or
conditionals
« If xe A occurs in an assignment
(Xg,eenXiy) == (B Ep)
then x occurs in E; only when x, € A
So: Variables in A cannot influence variables outside A

erase(c,A): ¢ with all assignments to auxillary variables
in A, and all assignments () := () erased

.

Auxillary Variable Rule

Proof rule:

g c{y}
{otc {w}

Side condition:

« There is a set A of auxillary variables of ¢ such that
¢’ = erase(c)

« P does not mention variables in A

P " 261515 Fomel etds P——— " 261515 Fomel etmds
Example Proof of Example
P: cobegin Proof outline A;:
N z = z : 1 {~done, A (—~done, — x = 0) A (done, — x = 1)}
coend (x,done,) := (x+1,true)
{done; A (—done, — x=1) A (done, — x = 2)}

Proof goal:

{x=0}P {x=2} Proof outline Ay:

This proof needs auxillary variables!

Idea: Add auxillary variables done,, done, to catch when
each of the assignments have been executed

2005 Mads Dam IMIT, KTH 15 2G1516 Formal Methods

{—done, A (-done; — x=0) A (done; — x = 1)}
(x,done,) := (x+1,true)
{done,A (—done; — x=1) A (done; — x=2)}

2005 Mads Dam IMIT, KTH 16 2G1516 Fommal Methods

Proof of Example, lI
Exercise: Check that A, and A, are interference free
By the Owicki-Gries rule + rule of consequence we obtain
{x=0 A —done,; A —done,} P’ {x = 2}

where P’ is P with assignments augmented with auxillary
variables as on previous slide

By Hoare logic reasoning:
{x =0} (done,,done,) := (false,false) ; P’ {x = 2}

By the auxillary variable rule:
{x=0}P{x=2}

2005 Mads Dam IMIT, KTH 17 2G1516 Fommal Methods

