
DD2452 Formal Methods

ESC/Java2 Assignment

Spring 2009

Due: 19 February 2009

The purpose of this assignment is to investigate the potential advantages
of using an extended static checker for the verification of code written in a
high-level programming language. Moreover, the assignment is meant to help
you catch a glimpse of how state-of-the-art technologies may be applied to the
production of high-quality software.

1 Requirements

The assignment should be done individually or in groups of two students. Each
group should present its solution at a workstation (or own portable machine)
and at the same time submit a report documenting the annotated code and
results.

The report should contain:

• Name and e-mail address of each of the participants in the group.

• The annotated ESC/Java2 code along with the explanation of your pre-
ferred specifications.

2 ESC/Java2 Installation

1. Check if you already have ESC/Java2 installed on your system.

2. If you do not have ESC/Java2 already installed on your system, get
ESC/Java2 from:

http://kind.ucd.ie/products/opensource/ESCJava2/download.html.

3. Using the same link above, download and install ESC/Java2 specifications
for the standard API classes and interfaces.

4. Read the documentation accompanying ESC/Java2 and test some of the
simple examples included in the distribution and the Bag example pro-
vided on the course web page.

1

3 Tasks

1. Choose a simple implementation of a data structure in Java. Please get
your choice approved by the course leader. Your code should satisfy the
following minimal requirements:

• The code is written in Java,

• it includes at least a class definition, and

• at least three/four meaningful methods, with at least one containing
a loop construct.

If you are out of ideas (but only in this case), you can pick the implemen-
tation of priority queues presented in Appendix A.

2. Run the tool over your (unannotated) code to check that it can access all
needed class specifications. You may have to provide a class specification
yourself if it is not available within the standard API specs.

3. Provide pre- and post-condition specifications for each method in your
code. These should first of all capture what a method is supposed to do
and how it is to be used, and be meaningful without knowledge of the
body of the method.

4. Provide class invariants for your code. These should capture the essential
properties of the data structure that should be preserved by the (public)
methods of the class (as for instance the shape property and the heap prop-

erty in the case of binary heaps – see for example Wikipedia for definitions
of these). However, private helper methods may violate the invariants; you
can use the helper modifier to designate these.

5. Provide loop invariants for all loops in your code.

6. Check your specification using ESC/Java2 using the -loopsafe switch.

7. Repeat Tasks 3 through 6, iteratively enriching the speicification, until
ESC/Java2 reports no warnings, or until you are confident that all warn-
ings are spurious (you may still add assumptions to investigate how much
help ESC/Java2 needs to prove your program correct).

Do not forget to discuss all your specification decisions in the report. Please
summarise your experiences with the tool.

A Priority Queues over Binary Heaps

This appendix contains a sample Java implementation of priority queues over
binary heaps. The code is also available from the course web page.

2

/**

* Compilation: javac PQ.java

* Execution: java PQ

*

* Priority queue (of integers) implementation with binary heap.

*

* Acknowledgement:

* A modified version of code originally by

* Robert Sedgewick and Kevin Wayne, responsibles for the COS 126

* course at Princeton University

* url: http://www.cs.princeton.edu/introcs/home/

*

***/

class PQ {

private int[] pq; // store elements at index 1 to N

private int N; // number of elements

// set initial size of heap to hold size elements

public PQ(int size) {

pq = new int[size + 1];

N = 0;

}

// set initial size of heap to hold 0 elements

public PQ() { this(0); }

boolean isEmpty() { return N == 0; }

int size() { return N; }

void insert(int item) {

// double size of array if necessary

if (N >= pq.length - 1) {

int[] pq = new int[2*(N+1)];

System.arraycopy(this.pq, 0, pq, 0, N + 1);

this.pq = pq;

}

pq[++N] = item;

swim(N);

}

3

int delMax() {

exch(1, N);

sink(1, N-1);

return pq[N--];

}

private void swim(int k) {

while (k > 1 && less(k/2, k)) {

exch(k, k/2);

k = k/2;

}

}

private void sink(int k, int N) {

while (2*k <= N) {

int j = 2*k;

if (j < N && less(j, j+1)) j++;

if (!less(k, j)) break;

exch(k, j);

k = j;

}

}

/***

* Helper functions.

**/

private boolean less(int i, int j) {

return (pq[i] < pq[j]);

}

private void exch(int i, int j) {

int swap = pq[i];

pq[i] = pq[j];

pq[j] = swap;

}

4

/***

* Test routine.

**/

public static void main(String[] args) {

PQ pq = new PQ();

pq.insert(2);

pq.insert(3);

pq.insert(7);

pq.insert(5);

while (!pq.isEmpty())

System.out.println(pq.delMax());

}

}

5

