
1

Advanced Formal Methods

Mads Dam
KTH/CSC

Course 2D1453, 2006-07 Prerequisites

• Undergraduate logic and discrete maths

• CS literacy

• Some functional programming experience useful
– The theorem prover Isabelle is programming in SML
– Some SML programming may be needed for course projects

• Semantics and formal methods advisable

Course Structure

• Lectures
– Initial six scheduled, more when needed

• Hand-in assignments
• Course project

– Formalize a theory and prove some theorems about it in Isabelle

• Presentation at final workshop
– Course projects
– Accompanied by written report

• Final take home exam
– Details to be determined

• Reading
– Slides, web, references on course page

Requirements

• Hand-in assignments
How?

• Course project presentation and report
• Take home exam

How?
• Course grade determined by exam

Agreed?
• Graduate students: By agreement

Course Committee - Kursnämnd

NN1:

NN2:

NN3:

Practicalities

Course web

http://www.csc.kth.se/utbildning/kth/kurser/2D1453/aform07/

Essential – updated without warning

Registration:
Please sign up with

Name
Program and year
Personnummer
Email contact

Special wishes or interests?



2

What is a Theorem Prover?

Theorem prover

Input Output

Theorem

Model, or 
theory

User 
guidance

Yes/no

Proof

Proof state

Counterexample

Automated theorem prover:
– Read first order logic sentence, crunch, answer yes or no or fail to 

terminate, maybe produce counterexample

Interactive theorem prover:
– Formalize problem in theory, guide theorem prover in proof search, 

automate when possible, output is proof (or failure)

What is a Theorem?

Theorem: A formalizable statement which is provable on 
the basis of explicit, formalizable assumptions

Pythagoras theorem: In a right triangle with sides A, B, C
where C is hypotenuse, C2 = A2+B2

– Theorem in the theory of geometry

Fundamental theorem of arithmetic: A whole number 
bigger than 1 can be uniquely represented as a product 
of primes
– Theorem in the theory of arithmetic

What is a Theorem?

Theorem: The program ”x:=n ; while x > 0 do x=x-1 od” 
terminates
– Theorem in the theory of while program execution

Some fictive theorem of Java bytecode verification: 
After passing the Java bytecode verifier (version x.y.z, 
this and that implementation) programs written in the 
Java Virtual Machine language are guaranteed to be 
type safe
– Theorem in the theory of JVM classfile execution

Formalized Theorems

• Theorems are stated in a formal logic
– Self-contained

– No hidden assumptions

• Many different logics are possible
– Propositional logic, first order logic, higher order logic, type

theory, linear logic, temporal logic, epistemic logic,...

• Not mathematical theorems
– Theorems in math are informal
– Mathematicians are happy with informal statements and proofs

Formalized Proofs

• Proofs are formal objects, subject to manipulation
• Not mathematical proofs
• Proofs in math are

– Informal
– Validated by ”peer review”

Same role as code inspection in software engineering
– Meant to convey a message – how the proof works
– Formal details are too cumbersome

So Why Bother?

• The problem itself rather than the maths is interesting
Want to know e.g.:
– Does program P deadlock?
– Is programming language L type safe?
– Does API A guarantee release of keys only to properly 

authorized users?

• Proofs may be huge, boring and repetitive, and not likely 
to be examined by peers

• Formalizing gives a chance to leave the mechanics to 
the machine
– Proof manipulation and proof recognition

• We can carry on with the interesting bits: 
– Formalization and proof search



3

Automated or Interactive proof?

The two are obviously related, and yet not
Automated theorem proving:

– Use: Posing questions small/easy enough to be tractable
– Technology: Algorithms and semi-algorithms

Interactive theorem proving:
– Use: Formal modelling and proof search
– Technology: Proof representation and manipulation

But of course the two are tightly related
– Pointless to do algorithmic work by hand

This course: Mainly interactive theorem proving
– At least initially

Some History

1929: M. Presburger shows that linear arithmetic is 
decidable

60’s: Field of automated theorem proving starts
– SAT – boolean satisfiability solving
– Resolution (Robinson, 1965)

– Lots of enthusiasm

70’s: Reality sinks in
– Complexity theory, hard problems
– Difficult to prove ”interesting” theorems

70’s – present: Many theorem proving systems built
– Otter, Boyer-Moore, NuPrl, isabelle, Coq, PVS, ESC/Java and 

simplify,...

In Maths

1976: Appel and Haken proves four colour conjecture
Splits proof into about 1500 cases examined by computer 

plus manual part 
First use of programs to solve open problem in math

– Highly controversial at the time

Since then other open problems in math have been settled
2004: Werner and Gonthier formalizes and proves four 

colour conjecture in CoQ
– Eliminates need to trust Appel and Haken’s program
– Instead need to trust CoQ higher order dependent type theory 

and its kernel implementation

Current Situation

• Software issues gain importance
– Internet – ease of downloading executable code, ease of attacks

– Java etc. – code mobility
– Increased public awareness of computer security issues

• New interest in software verification
– Automated and interactive program verification
– Protocols
– Language generics: Compilers, type systems, bytecode verifiers

• But the decidability and complexity bounds remain ...

What We’ll Do in the Course

• Theoretical underpinnings
– Lambda calculus
– Type systems
– Proof systems, natural deduction
– Some theorem proving
– Some decision procedures, probably

• Isabelle
– Getting you started
– Some Isabelle specifics
– Assignments mix pen and paper + Isabelle

• Projects
– Formalize some theory and prove things about it
– Security protocols, a machine model, a type system

Isabelle

• Generic proof assistant
• Developed by Larry Paulson at Cambridge and Tobias 

Nipkow at Munich
– Lots of other contributors

• Main instantiations are HOL and ZF
• URL: isabelle.in.tum.de

• Several layers:
– Proof General: User interface

– HOL, ZF: Object logics
– Isabelle: Generic proof assistant
– Standard ML: Programming language
– All layers can be accessed



4

Homework

• Look up the course page for papers by Hoare, Moore, 
Demillo et al.

• Visit the Isabelle site, download and install if needed
• Browse the documentation
• Familiarize yourself with the tool. Look through the 

preview at the overview page. 
• Start reading the Isabelle tutorial, work through sections 

2.1 and 2.2 to do a first example.


