Course 2D1453, 2006-07

Advanced Formal Methods

Mads Dam
KTH/CSC

Prerequisites

Undergraduate logic and discrete maths
CS literacy

Some functional programming experience useful
— The theorem prover Isabelle is programming in SML
— Some SML programming may be needed for course projects

Semantics and formal methods advisable

Course Structure

* Lectures
— Initial six scheduled, more when needed
* Hand-in assignments
» Course project
— Formalize a theory and prove some theorems about it in Isabelle
» Presentation at final workshop
— Course projects
— Accompanied by written report
Final take home exam
— Details to be determined
* Reading
— Slides, web, references on course page

Requirements

Hand-in assignments

How?

Course project presentation and report
Take home exam

How?

Course grade determined by exam
Agreed?

Graduate students: By agreement

Course Committee - Kursnamnd

NN1:
NN2:

NN3:

Practicalities

Course web

http://www.csc.kth.se/utbildning/kth/kurser/2D1453/aform07/

Essential — updated without warning

Registration:

Please sign up with
Name
Program and year
Personnummer
Email contact

Special wishes or interests?




What is a Theorem Prover?

Input Output
Yes/no
Theorem — v
-

] i Proof
Model, or Theorem prover
theory | — , Proof state
User \‘ Counterexample
guidance

Automated theorem prover:
— Read first order logic sentence, crunch, answer yes or no or fail to
terminate, maybe produce counterexample
Interactive theorem prover:
— Formalize problem in theory, guide theorem prover in proof search,
automate when possible, output is proof (or failure)

What is a Theorem?

Theorem: A formalizable statement which is provable on
the basis of explicit, formalizable assumptions

Pythagoras theorem: In a right triangle with sides A, B, C
where C is hypotenuse, C2 = A2+B2
— Theorem in the theory of geometry

Fundamental theorem of arithmetic: A whole number
bigger than 1 can be uniquely represented as a product
of primes

— Theorem in the theory of arithmetic

What is a Theorem?

Theorem: The program "x:=n ; while x > 0 do x=x-1 od”
terminates
— Theorem in the theory of while program execution

Some fictive theorem of Java bytecode verification:
After passing the Java bytecode verifier (version x.y.z,
this and that implementation) programs written in the
Java Virtual Machine language are guaranteed to be
type safe

— Theorem in the theory of JVM classfile execution

Formalized Theorems

« Theorems are stated in a formal logic
— Self-contained
— No hidden assumptions
« Many different logics are possible
— Propositional logic, first order logic, higher order logic, type
theory, linear logic, temporal logic, epistemic logic,...
* Not mathematical theorems
— Theorems in math are informal
— Mathematicians are happy with informal statements and proofs

Formalized Proofs

» Proofs are formal objects, subject to manipulation
» Not mathematical proofs
* Proofs in math are

— Informal

— Validated by "peer review”

Same role as code inspection in software engineering
— Meant to convey a message — how the proof works
— Formal details are too cumbersome

So Why Bother?

« The problem itself rather than the maths is interesting
Want to know e.g.:
— Does program P deadlock?
— Is programming language L type safe?
— Does API A guarantee release of keys only to properly
authorized users?

« Proofs may be huge, boring and repetitive, and not likely
to be examined by peers

Formalizing gives a chance to leave the mechanics to
the machine

— Proof manipulation and proof recognition

We can carry on with the interesting bits:

— Formalization and proof search




Automated or Interactive proof?

The two are obviously related, and yet not
Automated theorem proving:
— Use: Posing questions small/easy enough to be tractable
— Technology: Algorithms and semi-algorithms
Interactive theorem proving:
— Use: Formal modelling and proof search
— Technology: Proof representation and manipulation
But of course the two are tightly related
— Pointless to do algorithmic work by hand
This course: Mainly interactive theorem proving
— At least initially

Some History

1929: M. Presburger shows that linear arithmetic is
decidable
60’s: Field of automated theorem proving starts
— SAT - boolean satisfiability solving
— Resolution (Robinson, 1965)
— Lots of enthusiasm
70’s: Reality sinks in
— Complexity theory, hard problems
— Difficult to prove "interesting” theorems
70’s — present: Many theorem proving systems built

— Otter, Boyer-Moore, NuPrl, isabelle, Coq, PVS, ESC/Java and
simplify,...

In Maths

1976: Appel and Haken proves four colour conjecture
Splits proof into about 1500 cases examined by computer
plus manual part
First use of programs to solve open problem in math
— Highly controversial at the time
Since then other open problems in math have been settled
2004: Werner and Gonthier formalizes and proves four
colour conjecture in CoQ
— Eliminates need to trust Appel and Haken's program

— Instead need to trust CoQ higher order dependent type theory
and its kernel implementation

Current Situation

« Software issues gain importance

— Internet — ease of downloading executable code, ease of attacks
— Java etc. — code mobility
— Increased public awareness of computer security issues

* New interest in software verification

— Automated and interactive program verification
— Protocols
— Language generics: Compilers, type systems, bytecode verifiers

« But the decidability and complexity bounds remain ...

What We'll Do in the Course

Theoretical underpinnings
— Lambda calculus
— Type systems
— Proof systems, natural deduction
— Some theorem proving
— Some decision procedures, probably
* Isabelle
— Getting you started
— Some Isabelle specifics
— Assignments mix pen and paper + Isabelle
* Projects
— Formalize some theory and prove things about it
— Security protocols, a machine model, a type system

Isabelle

« Generic proof assistant

Developed by Larry Paulson at Cambridge and Tobias
Nipkow at Munich

— Lots of other contributors

Main instantiations are HOL and ZF

URL:isabel le.in.tumde

Several layers:

— Proof General: User interface

— HOL, ZF: Object logics

— Isabelle: Generic proof assistant

— Standard ML: Programming language
— All layers can be accessed




Homework

Look up the course page for papers by Hoare, Moore,
Demillo et al.

Visit the Isabelle site, download and install if needed
Browse the documentation

Familiarize yourself with the tool. Look through the
preview at the overview page.

Start reading the Isabelle tutorial, work through sections
2.1 and 2.2 to do a first example.




