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Advanced Formal Methods

Lecture 2: Lambda calculus

Mads Dam
KTH/CSC

Course 2D1453, 2006-07

Some material from B. Pierce: TAPL + some from G. Klein, NICTA 

λ−calculus

• Alonzo Church, 1903-1995
– Church-Turing thesis

– First undecidability results

– Invented λ-calculus in ’30’s

• λ-Calculus
– Intended as foundation for mathematics
– Discovered to be inconsistent, so interest faded (see later)
– Foundational importance in programming languages

– Lisp, McCarthy 1959
– Programming languages and denotational semantics

• Landin, Scott, Strachey 60’s and 70’s

– Now an indispensable tool in logic, proof theory, semantics, type 
systems

Untyped λ-calculus - Basic Idea

• Turing complete model of computation
• Notation for abstract functions

λx. x + 5:
Name of function that takes one argument and adds 
5 to it
I.e. a function f: x � x + 5

But:
• Basic λ-calculus talks only about functions
• Not numbers or other data types
• They are not needed!

Function application

• λ-abstraction sufficient for introducing functions
• To use functions need to be able to

– Refer to them:
Use variables x, y, z
For instance in λx. x – the identity function

– Apply them to an argument:
Application f x, same as f(x)
(λx. x + 5) 4

• To compute with functions need to be able to evaluate 
them
– (λx. x + 5) 4 evaluates to 4 + 5

• But language is untyped – (λx. x + 5) (λy. y) is also ok

Terms, Variables, Syntax

Assume a set of variables x, y, z
Term syntax in BNF:

t ::=  x | λx. t | t t
Conventions:

– List bound variables
λx y . t = λx. (λy. t)

– Application binds to left:
x y z = (x y) z

– Abstraction binds to right:
λx. x y = λx. (x y)

Example: λx y z. x z (y z)

β−reduction

The fundamental principle of computation in λ-calculus is 
replacement of formal by actual parameters

Example: (λx y. f (y x)) 5 (λx.x)

Substitution: 
• t[s/x] is t with s substituted for variable x
• Must avoid variable capture

β−reduction:
-

(λx. t) s �β t[s/x] 
s �β s’

s t �β s’ t 

t �β t’
s t �β s t’ 

t �β t’
λ x. t �β λ x. t’ 
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Side Track: Evaluation Order

Redex: Term of the shape (λx. t) t’
As defined, β-reduction is highly nondeterministic
Not determined which redex to reduce next
Example:

(λx. x) ((λy x. (λy. y) x) (λz. z z))

λy x. ((λy. y) x (λz. z z)

(λx. x) ((λy x. x) (λz. z z))

β β

(λx. x) (λx. (λy. y) x)
β

Evaluation Order, II

Full β-reduction: � is �β

(λx. x) ((λy x. (λy. y) x) (λz. z z))
� (λx. x) ((λy x. x) (λz. z z))
� (λy x. x) (λz. z z)
� (λx. x)

Normal order reduction:
Reduce leftmost, outermost redex first
(λx. x) ((λy x. (λy. y) x) (λz. z z))

� (λy x. (λy. y) x) (λz. z z)
� λx. (λy. y) x
� λx. x

Evaluation Order, III

Call-by-name reduction:
Leftmost, outermost, but no reduction under λ
(λx. x) ((λy x. (λy. y) x) (λz. z z))

� (λy x. (λy. y) x) (λz. z z)
� λx. (λy. y) x

Call-by-need: Variant that uses sharing to avoid 
reevaluation (Haskell)

Call-by-value
Outermost, arguments must be value (= λ-abstraction)
(λx. x) ((λy x. (λy. y) x) (λz. z z))

� (λx. x) ((λx. (λy. y) x))
� (λx. (λy. y) x)

Programming in λ-Calculus

Can encode lots of stuff:
• Turing machines, functional programs
• Logic and set theory

Booleans: Define
tt == λx y. x
ff == λx y. y
if == λx y z. x y z
and == λx y. x y ff

Example: if tt t s, and tt t

Exercise 1: Define boolean ”or” and ”not” functions 

Pairing

Define:
pair == λf s b. b f s
fst == λp. p tt
snd == λp. P ff

Example: Try fst(pair t s)

Church Numerals

Church numerals:
0 == λ s z. z
1 == λ s z. s z
2 == λ s z. s (s z)
3 == λ s z. s (s (s z))
...

That is, n is the function that applies its first argument n 
times to its second argument!

iszero == λn. n (λ x. ff) tt
succ == λn s z. s (n s z)
plus == λm n s z. m s (n s z)
times == λm n.m (plus n) 0
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Church Numerals - Exercises

Exercise: Define exponentiation, i.e. a term for raising one 
Church numeral to the power of another.

Predecessor is a little tricky
zz == pair 0 0
ss == λp. pair (snd p) (succ (snd p))
prd == λn. fst (n ss zz)

Exercise 2: Use prd to define a subtraction function

Exercise 3: Define a function equal that test two numbers 
for equality and returns a Church boolean.

Church Numerals, More Exercises

Exercise 4: Define ”Church lists”. A list [x,y,z] can be 
thought of as a function taking two arguments c (for 
cons) and n (for nil), and returns c x (c y (c z n)), similar 
to the Church numerals. Write a function nil representing 
the empty list, and a function cons that takes arguments 
h and (a function representing) a list tl, and returns the 
representation of the list with head h and tail tl. Write a 
function isnil that takes a list and return a Church 
boolean, and a function head. Finally, use an encoding 
similar to that of prd to write a tail function.

Normal Forms and Divergence

Normal form for �:
Term t for which no s exists such that t � s

There are terms in λ-calculus without normal forms:
omega == (λ x. x x) (λ x. x x)

� omega

omega is said to be divergent, non-terminating

Fixed Points

Define:
fix f == (λx. f (λy. x x y)) (λx. f (λy. x x y))

We see that:
fix f � (λx. f (λy. x x y)) (λx. f (λy. x x y))

� f (λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y)
”=” f (λx. f (λy. x x y)) (λx. f (λy. x x y)) 
== f(fix f)

”=” is actually η-conversion, see later

fix can be used to define recursive functions
Define first g = λf.”body of function to be defined” f
Then fix g is the result

Recursion

Define
factbody == λf. λn. if (equal n 0) 1 (times n (f (prd n)))
factorial == fix factbody

Exercise 5: Compute factorial n for some n

Exercise 6: Write a function that sums all members of a list 
of Church numerals

Free and Bound Variables

Now turn to some formalities about λ-terms

FV(t): The set of free variables of term t

FV(x) = {x}
FV(t s) = FV(t) � FV(s)
FV(λx. t) = FV(t) – {x}

Example.

Bound variable: In λx.t, x is a bound variable

Closed term t: FV(t) = �
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Substitution, I

Tricky business

Attempt #1:
x[s/x] = s
y[s/x] = y, if x ≠ y
(λy. t)[s/x] = λy.(t[s/x])
(t1 t2)[s/x] = (t1[s/x]) (t2[s/x])

But then:
(λx. x)[y/x] = λx. y

The bound variable x is turned into free variable y!

Substitution, II

Attempt #2:
x[s/x] = s
y[s/x] = y, if x ≠ y
(λy. t)[s/x] = λy. t, if x = y
(λ y. t)[s/x] = λ y.(t[s/x]), if x ≠ y 
(t1 t2)[s/x] = (t1[s/x]) (t2[s/x])

Better, but now:
(λx. y)[x/y] = λx. x

Capture of bound variable!

Substitution, III

Attempt #3:
x[s/x] = s
y[s/x] = y, if x ≠ y
(λy. t)[s/x] = λy. t, if x = y
(λy. t)[s/x] = λy.(t[s/x]), if x ≠ y and y ∉ FV(s)
(t1 t2)[s/x] = (t1[s/x]) (t2[s/x])

Even better, but now (λx. y)[x/y] is undefined

Alpha-conversion

Solution: Work with terms up to renaming of bound 
variables

Alpha-conversion: Terms that are identical up to choice of 
bound variables are interchangeable in all contexts

t1 =α t2: t1 and t2 are identical up to alpha-conversion

Convention: If t1 =α t2 then t1 = t2
Example: λx y. x y z

Really working with terms modulo =α

All operations must respect =α

Substitution, IV

Final attempt:
x[s/x] = s
y[s/x] = y, if x ≠ y
(λy. t)[s/x] = λy.(t[s/x]), if x ≠ y and y ∉ FV(s)
(t1 t2)[s/x] = (t1[s/x]) (t2[s/x])

Clause for case x = y not needed due to =α

Now:
(λx. t)[s/x] 

= (λy. t[y/x])[s/x], where y ∉ FV(t) � {x} � FV(s)

= λy. t[y/x][s/x]

Confluence

Confluence, or Church-Rosser (CR) property:
if s �* s1 and s �* s2 then there is t such that s1 �

* t and 
s2 �

* t

Full β reduction in λ-calculus is confluent
Order of reduction does not matter for result
Normal forms in λ-calculus are unique

Example: Use example slide 7

s

s1 s2

t

**

* *
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Conversion and Reduction

Primary concept is reduction �

β−conversion s =β t: 
• s and t have common reduct under �β

*

• Exists s’ such that s �β
* s’ and t �β

* s’

t reducible if s exists such that t � s

• If and only if t contains a redex (λx.t1) t2
• Exercise 7: Show this formally.

Then s is reduct of t under �

Normal Forms

If t not reducible then t is in normal form

t has normal form (under �):
there is some s in normal form such that t �* s

Proposition: If � is CR then normal forms, if they exist, 
are unique.

Proof: Diagram chasing

etc.

η−Conversion

Principle of extensionality: 
Terms are determined by their functional behaviour
So: If two terms are equal for all arguments, then they 
should be regarded as the same

So if x ∉ FV(t) then t = λx. t x

η−reduction: x ∉ FV(t)
λx. t x �η t 

s �η s’
s t �η s’ t 

t �η t’
s t �η s t’ 

t �η t’
λ x. t �η λ x. t’ 

Congruence 
closure rules

η−Conversion, II

Example: (λ x. f x) (λ y. g y) �η
* f g

�βη: Both β and η reductions allowed

Both �η and �βη are CR

Equality in Isabelle is modulo α, β, η

Some History

λ−calculus was originally intended as foundation for 
mathematics

Frege (predicate logic, ~1879):
Allows arbitrary quantification over predicates

Russell (1901): Paradox D = {X � X ∉ X}

Russell and Whitehead (Principia Mathematica, 1910-13):
Types and type orders, fix the problem

Church (1930): λ-calculus as logic

”Inconsistency” of λ-calculus

Logical sentences coded as λ-terms

• x � P == P x
• {x � P x} == λx. P x

Define
• D == λ x. not(x x)

Then (Russell’s paradox)
• D D =β not(D D)
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Exercise 8

Prove the following lemma concerning the relation �β:

Lemma: If t �β s then t = t1[t2/x] for some x, t1, t2 such that 
x occurs exactly once in t1, and such that

- t2 has the form (λy.t2,1) t2,2 (for some y, t2,1, t2,2)
- s = t1[t2,1[t2,2/y]/x]

Use this lemma to conclude that there are t, t’, s, s’ such 
that t �β t’, s �β s’, but t s �β t’ s’ does not hold


