Course 2D1453, 2006-07

Advanced Formal Methods

Lecture 2: Lambda calculus

Mads Dam
KTH/CSC

Some material from B. Pierce: TAPL + some from G. Klein, NICTA

A—calculus

« Alonzo Church, 1903-1995
— Church-Turing thesis
— First undecidability results
— Invented A-calculus in '30’s

* A-Calculus
— Intended as foundation for mathematics
— Discovered to be inconsistent, so interest faded (see later)
— Foundational importance in programming languages
— Lisp, McCarthy 1959
— Programming languages and denotational semantics
« Landin, Scott, Strachey 60’s and 70's

— Now an indispensable tool in logic, proof theory, semantics, type
systems

Untyped A-calculus - Basic Idea

» Turing complete model of computation
» Notation for abstract functions

AX. X +5:

Name of function that takes one argument and adds
5toit
l.e. afunction f: x> x + 5

But:

» Basic A-calculus talks only about functions

* Not numbers or other data types

» They are not needed!

Function application

« A-abstraction sufficient for introducing functions
« To use functions need to be able to
— Refer to them:
Use variables x, y, z
For instance in Ax. x — the identity function
— Apply them to an argument:
Application f x, same as f(x)
(Ax.x+5)4
« To compute with functions need to be able to evaluate
them

— (AX. x +5) 4 evaluatesto 4 + 5
« But language is untyped — (Ax. x + 5) (Ay. y) is also ok

Terms, Variables, Syntax

Assume a set of variables x, y, z
Term syntax in BNF:
to= x|AX. t]tt
Conventions:
— List bound variables
AXY . t=Ax. (Ay. 1)
— Application binds to left:
Xyz=(xy)z
— Abstraction binds to right:
AX. XY = AX. (XY)
Example: Axy z.x z (y 2)

B-reduction

The fundamental principle of computation in A-calculus is
replacement of formal by actual parameters

Example: (Axy. f (y x)) 5 (Ax.X)
Substitution:

« t[s/x] is t with s substituted for variable x
* Must avoid variable capture

- - _S—=pS
B-reduction: (Ax.t) s =4 t[s/X] St—ogs't
t—gt t—ogt

st—gst AX.t—=gAx.t

Side Track: Evaluation Order

Redex: Term of the shape (Ax. t) t’
As defined, B-reduction is highly nondeterministic
Not determined which redex to reduce next
Example:
Ax. X) (Ay X. AY.y) X) (A\z. 2 2))
|
| s

AY X, (AY. y) X (\z. 2 Z) ‘X (AX. X) AX. Ay. y) x)
B

(AX. X) ((Ay x. X) (Az. z 2))

Evaluation Order, Il

Full B-reduction: — is —;
Ax. X) (Ay X. AY.y) X) (A\z. 2 2))
— (AX. X) (Ay x. X) (A\z. z 2))
— Ay X.X) (Az.z z)
— (AX. x)

Normal order reduction:
Reduce leftmost, outermost redex first
Ax.X) (Ay x. AY.y) X) (A\z. 2 2))
= Ay x. QAy.y)X) (Az. 2 2)
— AX. (Ay. y) x
— AX. X

Evaluation Order, IlI

Call-by-name reduction:
Leftmost, outermost, but no reduction under A
(x. %) (Ay x. Ay. y) X) (Az. 2 2))
— Ay X. Ay.y) X) (Az.z 2)
— AX. (AY. y) X

Call-by-need: Variant that uses sharing to avoid
reevaluation (Haskell)

Call-by-value
Outermost, arguments must be value (= A-abstraction)
(AX. X) (AY X. (Ay. y) X) (Az. 2 2))
— (AX. X) ((Ax. (AY. y) X))
— (X QY. ¥) X)

Programming in A-Calculus

Can encode lots of stuff:
« Turing machines, functional programs
« Logic and set theory

Booleans: Define

tt==Axy. X
ff==Axy.y
if==Axyz.xyz

and == Axy. x y ff
Example: ifttts, and tt t

Exercise 1: Define boolean "or” and "not” functions

Pairing
Define:
pair==Afsb.bfs
fst==Ap.ptt
snd == Ap. P ff

Example: Try fst(pair t s)

Church Numerals

Church numerals:

3==Aszs(s(sz)

That is, n is the function that applies its first argument n
times to its second argument!

iszero == An. n (A x. ff) tt
succ==Ansz.s(nNsz)
plus==Amnsz.ms(nsz)
times == Am n.m (plus n) 0

Church Numerals - Exercises

Exercise: Define exponentiation, i.e. a term for raising one
Church numeral to the power of another.

Predecessor is a little tricky
zz==pair00
ss == Ap. pair (snd p) (succ (snd p))
prd == An. fst (n ss zz)

Exercise 2: Use prd to define a subtraction function

Exercise 3: Define a function equal that test two numbers
for equality and returns a Church boolean.

Church Numerals, More Exercises

Exercise 4: Define "Church lists”. A list [x,y,z] can be
thought of as a function taking two arguments c (for
cons) and n (for nil), and returns ¢ x (c y (¢ z n)), similar
to the Church numerals. Write a function nil representing
the empty list, and a function cons that takes arguments
h and (a function representing) a list tl, and returns the
representation of the list with head h and tail tl. Write a
function isnil that takes a list and return a Church
boolean, and a function head. Finally, use an encoding
similar to that of prd to write a tail function.

Normal Forms and Divergence

Normal form for —:
Term t for which no s exists such thatt — s

There are terms in A-calculus without normal forms:
omega == (A X. X X) (A X. X X)
— omega

omega is said to be divergent, non-terminating

Fixed Points
Define:
fix f == (Ax. f Ay. x xy)) Ax. f (Ay. x X y))
We see that:

fix f = (Ax. f Ay, x x y)) (Ax. f (Ay. x x)
= O, O FAY. xXY)) A f QY. xXY)) Y)
"= £ O F Y. xxy)) O f Q. xxy)
== f(fix)

"=" is actually n-conversion, see later
fix can be used to define recursive functions

Define first g = Af.”body of function to be defined” f
Then fix g is the result

Recursion

Define
factbody == Af. An. if (equal n 0) 1 (times n (f (prd n)))
factorial == fix factbody

Exercise 5: Compute factorial n for some n

Exercise 6: Write a function that sums all members of a list
of Church numerals

Free and Bound Variables
Now turn to some formalities about A-terms
FV(t): The set of free variables of term t
FV(x) = {x}
FV(ts) = FV(t) U FV(s)
FV(Ax. t) = FV(t) — {x}
Example.

Bound variable: In Ax.t, X is a bound variable

Closed term t: FV(t) = 0

Substitution, |

Tricky business

Attempt #1:
X[s/x] =s
y[six] =y, ifxzy
(Ay. Y)[s/x] = Ay.(t[s/x])
(t R[S = (LIS/X)) (tIsi)

But then:
(AX. X)[y/X] = Ax. y

The bound variable x is turned into free variable y!

Substitution, Il

Attempt #2:
X[s/x] =s
ylsix] =y, ifx#y
Ay. D[s/X] =Ay. t,ifx=y
A y. O[siX] = y.(t[s/X]), if x £y
(t IS/ = (LIS (s

Better, but now:
(Ax. y)[x/y] = Ax. x

Capture of bound variable!

Substitution, Il

Attempt #3:
X[s/x] =s
y[six] =y, ifxzy
Ay. [s/X]=Ay. t, if x=y
(Ay. Y[s/X] = Ay.(t[s/x]), if x £y and y O FV(s)
(t,)[s/x] = (t,[s/x]) (t,[s/x])

Even better, but now (Ax. y)[x/y] is undefined

Alpha-conversion

Solution: Work with terms up to renaming of bound
variables

Alpha-conversion: Terms that are identical up to choice of
bound variables are interchangeable in all contexts

t, =, t,: t; and t, are identical up to alpha-conversion

Convention: If t, = t, thent, = t,
Example: Axy. Xy z

Really working with terms modulo =,

All operations must respect =,

Substitution, IV

Final attempt:
X[s/x] =s
y[six] =y, ifx#zy
(Ay. t)[s/x] = Ay.(t[s/x]), if x 2y and y O FV(s)
(ty t)s/X] = (ty[s/x]) (t[s/X])

Clause for case x = y not needed due to =,

Now:

(Ax. Y)[s/x]
= (Ay. tly/X])[s/x], where y O FV(t) U {x} U FV(s)
= Ay. tly/x][s/x]

Confluence

Confluence, or Church-Rosser (CR) property:
if s »"s, and s =" s, then there is t such that s, —" tand

s, 't
S
*/ *
S .Sz

Sk e
S

t

Full B reduction in A-calculus is confluent
Order of reduction does not matter for result
Normal forms in A-calculus are unique

Example: Use example slide 7

Conversion and Reduction

Primary concept is reduction —

B-conversion s = t:
¢ s and t have common reduct under —>B*
* Exists s’such thats —g"s’and t =" s’

treducible if s exists such thatt — s
 If and only if t contains a redex (Ax.t;) t,

» Exercise 7: Show this formally.

Then s is reduct of t under —

Normal Forms

If t not reducible then t is in normal form

t has normal form (under —):
there is some s in normal form such thatt —* s

Proposition: If — is CR then normal forms, if they exist,
are unique.
Proof: Diagram chasing / \

s ! X ax
A etc.

n—Conversion

Principle of extensionality:
Terms are determined by their functional behaviour

So: If two terms are equal for all arguments, then they
should be regarded as the same

Congruence

Soif x O FV(t) thent=Ax. tx closure ruIes

n—Conversion, Il

Example: A x. fxX) A y. gy) =, fg
—rgq: Both B and n reductions allowed
Both —, and —, are CR

Equality in Isabelle is modulo a, B, n

n-reduction: x 0 V() Csons J
AX tX =t sta s't
tat tat
sta st }\xt—> AXt
Some History

A—calculus was originally intended as foundation for
mathematics

Frege (predicate logic, ~1879):
Allows arbitrary quantification over predicates

Russell (1901): Paradox D = {X | X O X}

Russell and Whitehead (Principia Mathematica, 1910-13):

Types and type orders, fix the problem

Church (1930): A-calculus as logic

"Inconsistency” of A-calculus

Logical sentences coded as A-terms

e XeP==Px
o {X|Px}==Ax.Px

Define
¢ D ==\ x. not(x x)

Then (Russell’'s paradox)
* DD =gnot(D D)

Exercise 8
Prove the following lemma concerning the relation —;.

Lemma: If t —g s then t =t [t,/x] for some X, t;, t, such that
x occurs exactly once in t;, and such that
- t, has the form (Ay.t, ;) t, , (for some y, t, 1, t, ,)
-8 =ttt ofylIX]

Use this lemma to conclude that there are t, t', s, s’ such
thatt —,t', s =B s, butts —; t' s’ does not hold

