Course 2D1453, 2006-07

Advanced Formal Methods

Lecture 5: Isabelle — Proofs and Rewriting

Mads Dam
KTH/CSC

Some slides from Paulson

Isabelle’s Metalogic

Basic constructs:
e t=s
Equations on terms
e A=A,
Implication
Example: x =y = append x xs = append y xs
If A, is valid then so is A,
AX. A
Universal quantification
A[t/x] is valid for all t (of appropriate type)

These are meta-connectives, not object-logic connectives

Isabelle Proof Goals

Proof goals, or judgments:
» The basic shape of proof goal handled by Isabelle
 Local proof state, subgoal

General shape: AXy,.... X [Ars o s A=A
* Xy, Xy Local variables

e Ay...,A;: Local assumptions

» A:local proof goal

Meaning: For all terms ty,....t,, if all Alty/xy,...,t/x,] are
provable then so is At /Xy ,...,t/Xy]

Global Proof State

An Isabelle proof state consists of number of unproven
judgments
LAX eeXmge [ALL s s An T = Ay

Ko AXq oo X [ALK oo s Ang] = A
If k = 0 proof is complete
Judgment #1 is the one currently being worked on

Commands to list subgoals, toggle between subgoals, to
apply rules to numbered subgoals, etc.

Goal-Driven Proof - Intuition

Proof goal:
* AXgpee X [AL A=A

Find some "given fact” B, under assumptions B,,...,B, such
that Ais” B

Replace subgoal * by subgoals
AXgyeeXme [Ars o s Al =B_1

AXpyeeXme [A1; s Ay] = B_k

But, "is” is really "is an instance of” so story must be refined

Unification
Substitution:
Mapping o from variables to terms
[t/x]: Substitution mapping x to t, otherwise the identity

to: Capture-avoiding substitution o applied to t

Unification:
Try to make terms t and s equal
Unifier: Substitution o on terms s, t such that so = to
Unification problem: Given t, s, is there a unifier on s, t

Higher-Order Unification

In Isabelle:
Terms are terms in Isabelle = extended A_, Terms
Equality on terms are modulo a, 3, n
Variables to be unified are schematic
Schematic variables can have function type
(= higher order)

Examples:
PXN?Y Zgpq XA X under [X/?X,x/?Y]
PP X =ggn XA X under [AX.X A x/?P]
P (?f X) =gpq ?Y X under [Ax.x/?f,P/Y]

First Order Unification

Decidable

Most general unifiers (mgu’s) exist:
o is mgu for t and s if
o unifies tand s

Whenever ¢’ unifies t and s then to, to’, and so, so’
are both unifiable

Exercise 1: Show that [h(?Y)/?X,g(h(?Y))/?Z] is mgu for
f(?X,9(?X)) and f(h(?Y),?Z).

Applications in e.g. logic programming

Higher Order Unification

HO unification modulo a, B is semi-decidable
HO unification modulo a,B,n is undecidable

Higher order pattern:
Term tin B normal form (value in slides for lecture 3)
Schematic variables only in head position
?ft .ty
Each t; n-convertible to n distinct bound variables

Unification on HO patterns is decidable

Exercises

Exercise 2: Determine whether each pair of terms is
unifiable or not. If it is, exhibit a unifier. If it is not, show
why.

. (X, ?%,, ?X,) and f(?y,, ?y,, k)

. f(xq, ?%,, ?%,) and f(y;, g ?x,, k)

- £(?pxy (h 2)) and ?q (g(x.y).h(?r))

- ?p (9 %) (hx;) and ?q (g y,) (hyy)

. ?p (9?9, hz)andf(h?r, h?r)

g A~ WN P

Term Rewriting

Use equations t = s as rewrite rules from left to right

Example: Use equations:

1. 0+n=n

2. (suc m) +n =suc(m +n)
3. (sucm<sucn)=(m<n)
4. (0 <m)=true

Then:
0 +suc 0 < (suc 0) +x (by (1))
= suc 0 < (suc 0) +x (by (2))
= suc 0 < suc (0 +x) (by (3))
= 0<0+x (by (4)
= true

More Formally

Rewrite rule | = r is applicable to term t[s/x] if:
* There is a substitution o such that lo =5, s
* ounifiesland s

Result of rewrite is t[so/x]

Note: t[s/x] = t[sa/X]

Example:

Equation: 0 +n=n
Term:a + (0 + (b +c))
Substitution: [b+c/n]
Result: a + (b +¢)

Conditional Rewriting

Assume conditional rewrite rule
Rid:A = ...=A =I=r

Rule RId is applicable to term t[s/x] if:

* There is a substitution o such that lo =5, s

e ounifieslands

* A0,..., A0 are provable

Again result of rewrite is t[sa/x]

Basic Simplification

Goal: [A;; ...; AL] =B

Apply(simp add: eqy, ..., €q,)

Simplify B using

* Lemmas with attribute simp

* Rules from primrec and datatype declarations
« Additional lemmas eq;,...,eq,

e Assumptions A, ..., A,

Variation:
e (simp ... del: ...) removes lemmas from simplification set
« add, del are optional

Termination

Isabelle uses simp-rules (almost) blindly from left to right
Termination is the big issue

Example: f(x) = g(x), g(x) = f(x)

Rewrite rule
[A; ... Al=I1=r
suitable for inclusion in simplification set only if rewrite from
| to r reduces overall complexity of the global proof state
So: | must be "bigger” than r and each A

n<m=true = (n<sucm) =true (may be good)
(sucn<m)=true ==n<m=true (notgood)

Case Splitting

P(if Athen s else t) = (A — P(s)) A (-A — P(t)
Included in simp by default

P(casetof 0 = s, |Sucn=s,)
=({t=0—=P(s)) A(Vn.t=Sucn— P(s,)

Not included — use (simp split: nat.split)

Similar for other datatypes T: T.split

Ordered Rewriting

Problem: ?x + ?y = ?y + ?x does not terminate

Isabelle: Use permutative rewrite rules only when term
becomes lexicographically smaller
Example: ?b + ?a ~» ?a + ?b but not ?a + ?b ~» ?b + ?a

For types nat, int, etc.
¢ Lemmas add-ac sort any sum
* Lemmas times_ac sort any product

Example: (simp add:add-ac) yields
(b+c)+a~a+(b+c)

Preprocessing

Simplification rules are preprocessed recursively:

- A A=False
A—-B—~A=B
AANB=ADB
¥ X. AX) = A(?X)
A A=True

Example:
P—=gA-TN)AS
— p =True = q=True, p=True = r = False, s = True

