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Advanced Formal Methods

Lecture 5: Isabelle – Proofs and Rewriting

Mads Dam
KTH/CSC

Course 2D1453, 2006-07

Some slides from Paulson 

Isabelle’s Metalogic

Basic constructs:
• t = s

Equations on terms 
• A1 � A2

Implication
Example: x = y � append x xs = append y xs
If A1 is valid then so is A2

�x. A
Universal quantification
A[t/x] is valid for all t (of appropriate type)

These are meta-connectives, not object-logic connectives

Isabelle Proof Goals

Proof goals, or judgments:
• The basic shape of proof goal handled by Isabelle
• Local proof state, subgoal

General shape: �x1,...,xm. � A1 ; ... ; An � � A

• x1,...,xm: Local variables
• A1,...,An: Local assumptions
• A: local proof goal

Meaning: For all terms t1,...,tm, if all Ai[t1/x1,...,tm/xm] are 
provable then so is A[t1/x1,...,tm/xm]

Global Proof State

An  Isabelle proof state consists of number of unproven 
judgments

1. �x1,1,...,xm,1. � A1,1 ; ... ; An,1 � � A1

....
k. �x1,k,...,xm,k. � A1,k ; ... ; An,k � � Ak

If k = 0 proof is complete

Judgment #1 is the one currently being worked on 

Commands to list subgoals, toggle between subgoals, to 
apply rules to numbered subgoals, etc.

Goal-Driven Proof - Intuition

Proof goal:
* �x1,...,xm. � A1 ; ... ; An � � A

Find some ”given fact” B, under assumptions B1,...,Bk such 
that A ”is” B

Replace subgoal * by subgoals
�x1,...,xm. � A1 ; ... ; An � � B_1

...
�x1,...,xm. � A1 ; ... ; An � � B_k

But, ”is” is really ”is an instance of” so story must be refined

Unification

Substitution:
Mapping σ from variables to terms

[t/x]: Substitution mapping x to t, otherwise the identity

tσ: Capture-avoiding substitution σ applied to t

Unification:
Try to make terms t and s equal 
Unifier: Substitution σ on terms s, t such that sσ = tσ
Unification problem: Given t, s, is there a unifier on s, t
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Higher-Order Unification

In Isabelle:
Terms are terms in Isabelle = extended λ� Terms
Equality on terms are modulo α, β, η
Variables to be unified are schematic
Schematic variables can have function type

(= higher order)

Examples:
?X � ?Y =αβη x � x under [x/?X,x/?Y]
?P x =αβη x � x under [λx.x � x/?P]

P (?f x) =αβη ?Y x under [λx.x/?f,P/Y]

First Order Unification

Decidable

Most general unifiers (mgu’s) exist:
σ is mgu for t and s if

σ unifies t and s
Whenever σ’ unifies t and s then tσ, tσ’, and sσ, sσ’ 
are both unifiable 

Exercise 1: Show that [h(?Y)/?X,g(h(?Y))/?Z] is mgu for 
f(?X,g(?X)) and f(h(?Y),?Z).

Applications in e.g. logic programming 

Higher Order Unification

HO unification modulo α, β is semi-decidable
HO unification modulo α,β,η is undecidable

Higher order pattern:
Term t in β normal form (value in slides for lecture 3)
Schematic variables only in head position

?f t1 ... tn
Each ti η-convertible to n distinct bound variables

Unification on HO patterns is decidable 

Exercises

Exercise 2: Determine whether each pair of terms is 
unifiable or not. If it is, exhibit a unifier. If it is not, show 
why.

1. f(x1, ?x2, ?x2) and f(?y1, ?y2, k)
2. f(x1, ?x2, ?x2) and f(y1, g ?x2, k)
3. f (?p x y (h z)) and ?q (g(x,y),h(?r))
4. ?p (g x1) (h x2) and ?q (g y2) (h y1)
5. ?p (g ?q, h z) and f(h ?r, h ?r)

Term Rewriting

Use equations t = s as rewrite rules from left to right

Example: Use equations:
1. 0 + n = n
2. (suc m) + n = suc(m + n)
3. (suc m � suc n) = (m � n)
4. (0 � m) = true
Then:

0 + suc 0 � (suc 0) + x (by (1))
= suc 0 � (suc 0) + x (by (2))
= suc 0 � suc (0 + x) (by (3))
= 0 � 0 + x (by (4))
= true

More Formally

Rewrite rule l = r is applicable to term t[s/x] if:
• There is a substitution σ such that lσ =αβη s
• σ unifies l and s
Result of rewrite is t[sσ/x]

Note: t[s/x] = t[sσ/x]

Example:
Equation: 0 + n = n
Term: a + (0 + (b + c))
Substitution: [b+c/n]
Result: a + (b + c)
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Conditional Rewriting

Assume conditional rewrite rule
RId: A1 � ... � An � l = r

Rule RId is applicable to term t[s/x] if:
• There is a substitution σ such that lσ =αβη s
• σ unifies l and s
• A1σ,..., Anσ are provable

Again result of rewrite is t[sσ/x]

Basic Simplification

Goal: � A1; ... ; Am � � B

Apply(simp add: eq1, ... , eqn)
Simplify B using
• Lemmas with attribute simp
• Rules from primrec and datatype declarations
• Additional lemmas eq1,...,eqn

• Assumptions A1, ... , Am

Variation:
• (simp ... del: ...) removes lemmas from simplification set
• add, del are optional

Termination

Isabelle uses simp-rules (almost) blindly from left to right
Termination is the big issue

Example: f(x) = g(x), g(x) = f(x)

Rewrite rule
� A1; ... ; An� � l = r

suitable for inclusion in simplification set only if rewrite from 
l to r reduces overall complexity of the global proof state

So: l must be ”bigger” than r and each Ai

n < m = true � (n < suc m) = true (may be good)
(suc n < m) = true � n < m = true (not good)

Case Splitting

P(if A then s else t) = (A � P(s)) � (�A � P(t))

Included in simp by default

P(case t of 0 � s1 | Suc n � s2) 
= (t = 0 � P(s1)) � (� n. t = Suc n � P(s2))

Not included – use (simp split: nat.split)

Similar for other datatypes T: T.split

Ordered Rewriting

Problem: ?x + ?y = ?y + ?x does not terminate
Isabelle: Use permutative rewrite rules only when term 

becomes lexicographically smaller
Example: ?b + ?a � ?a + ?b but not ?a + ?b � ?b + ?a 

For types nat, int, etc.
• Lemmas add  ac sort any sum
• Lemmas times  ac sort any product

Example: (simp add:add  ac) yields
(b + c) + a � a + (b + c)

Preprocessing

Simplification rules are preprocessed recursively:

� A � A = False
A � B � A � B

A � B � A, B
� x. A(x) � A(?x)
A � A = True

Example:
(p � q � � r) � s
� p = True � q = True, p = True � r = False, s = True


