
1

Advanced Formal Methods

Lecture 6: Isabelle - HOL

Mads Dam
KTH/CSC

Course 2D1453, 2006-07

Material from L. Paulson

What Is Higher Order Logic?

Propositional logic
No quantifiers
All variables have type bool

First Order Logic
Quantification over values of base type
Terms and formulas are syntactically distinct

Higher Order Logic
Quantification over functions and predicates
Consistency by typing
Formula = term of type bool
Predicate = function with codomain bool
λ� + a few types and constants

Natural Deduction

Two kinds of rules for each logical operator �

Introduction rules:
How can A � B be proved?

Elimination rules:
What can be inferred from A � B?

Natural deduction calculus:
Proof trees may have unproven leaves = assumptions
Assumptions can be introduced and discharged

Sequent calculus:
All assumptions (and alternative conclusions)
represented explicitly in proof judgments

Rule Notation

Write

Instead of �A1 ; ... ; An� � A

In other words:
Stipulating an inference rule ”RuleName”

Same as:
Declaring an Isabelle metalogic term �A1 ; ... ; An� � A to
be provable by named rule

Derived rule �A1 ; ... ; An� � A
Rule is provable in Isabelle’s metalogic

A1 ... An
A RuleName

Natural Deduction, Propositional Logic

A B

A � B
�I

A�B �A;B� � C

C
�E

A�B A � C B � C

C
�E

A

A � B
�I1/2

B

A � B

A � B

A � B
�I

A � B A B � C

C
�E

A � B B � A

A = B
iffI

A ��False

	A
	I

A = B

A � B
iffD1/2

A = B

B � A

	A A

C
	E D for

”definition”

Equality

Exercise 1: Prove that the following rules are derived:

-

t = t
=I

s = t A[s/x]

A[t/x]
=E

s = t

t = s
Sym

r = s s = t

r = t
Trans

s = t A[s/x] A[t/x] � C

C
=E’

2

More Rules

ccontr and classical not derivable from other rules
They make the logic ”classical”, i.e. non-constructive

A � B A

B
mp

	A � False

A
ccontr

	A � A

A
classical

Proof by Assumption

Implicit in Isabelle’s metalogic

�A1 ; ... ; An� � Ai provable for any i: 1
 i
 n

In isabelle:
apply assumption

proves
1. �B1 ; ... ; Bn� � C
by unifying C with some Bi, 1
 i
 n

Note: This may cause backtracking!

Rule Application

Rule: � A1 ; ... ; An � � A

Subgoal:
1. � B1 ; ... ; Bm � � C

Substitution:
σ(A) == σ(C)
(recall: == means ”same term as”)

New subgoals:
1. σ(� B1 ; ... ; Bm � � A1)

...
n. σ(� B1 ; ... ; Bm � � An)

Command:
apply (rule <RuleName>)

Exercises

Exercise 2: Prove the following in HOL. Pen and paper is
fine. If you use Isabelle, use only basic HOL rules
corresponding to rules given in previous slides – no
simplifiers

1. A � (B � C) � (A � B) � C
2. (A � (B � C)) � (A � B) � C
3. A � A � A � A
4. A � B � 	 A � B
5. A � (B � C) � (A � B) � C
6. (A � 	B) � (B � 	A) = (A = 	B)
7. 	(A � B) � (A) � (B)

Elimination Rules in Isabelle

Tactic erule assumes that first rule premise is assumption
to be eliminated:
apply (erule <RuleName>):

Example:
Rule: � ?P � ?Q ; � ?P; ?Q � � ?R� � ?R
Subgoal: � X ; A � B ; Y � � Z

Unifier: ?R == Z, ?P == A, ?Q == B
New subgoal: � X; Y � � � A; B � � Z
Same as: � X; Y; A; B � � Z

Safe and Unsafe Rules

Recall: Rules applied bottom up

Safe rules: Provability is preserved (in bottom up direction)

Examples: �I, �I, 	I, iffI, refl, ccontr, classical, �E, �E

Unsafe rules: Can turn provable goal into unprovable one:

Examples: �I1, �I2, �E, iffD1, iffD2, 	E

3

� vs. �

Theorems should be written as
� A1 ; ... ; An � � A

Not as
A1 � ... � An � A

Exception: Induction variable must not occur in premises

Example:
� A; B(x)� � C(x), not good
Use instead: A � B(x) � C(x)

Predicate Logic - Parameters

Subgoal:
1. � x1 ... xn. Formula

The xi are parameters of the subgoal
Intuition: Local constants, arbitrary, fixed values

Rules automatically lifted over � x1 ... xn and applied
directly to Formula

Scope

Scope of parameters: Whole subgoal
Scope of HOL connectives:

Never extend to meta-level
I.e. ends with ; or �

��x y. � �y. P y � Q z y; Q x y� � �x. Q x y

means
��x y.� (�y1. P y1 � Q z y1); Q x y� � �x1. Q x1 y

Natural Deduction, Predicate Logic

• �I and �E introduce new parameters (�x)
• �I and �E introduce new unknowns (?x)

�x.(P x)

�x.(P x)
�I

�x.(P x) (P ?x) � R

R
�E

(P ?x)

�x.(P x)
�I

� x.(P x) � x.(P x) � R

R
�E

Instantiating Rules

apply (rule tac x = t in <rule>)
Acts as <rule>, but ?x in <rule> is instantiated to t before

application

erule tac is similar

So: x is in <rule>, not in the goal

Two Successful Proofs

1. �x. �y. x = y
apply (rule �I)

1. �x. �y. x = y

?y � λz.z

Shorter and trickierSimpler and clearer

Exploration
apply (rule �I)
1. �x. x = ?y x

apply (rule refl)

Best practice
apply (rule tac x = ”x” in �I)
1. �x. x = x

apply (rule refl)

4

Two Unsuccessful Proofs

1. � y. � x. x = y

apply (rule �I)
1. �x. x = ?y
apply (rule �I)
1. � x. x = ?y

apply (rule refl)
?y � x yields �x’. x’ = x

???

apply (rule tac x = ??? in �I)

???

Safe and Unsafe Rules

Safe: �I, �E
Unsafe: �E, �I

Create parameters first, unknowns later

Exercises, Predicate Logic

Exercise 3. Prove or disprove the following formulas. If you
prove the formulas, use Isabelle, as in exercise 2. For a
disproof it is sufficient to show that the formulas are
false in ordinary first-order logic.

1. �x.�y. R x y = �y.�x. R x y
2. (�x. P x) � (�y. Q y) = �z. (P z) � (Q z)
3. 	 �x. P x � �y.	(P y)
4. �x.(P x � �y.P y)

Renaming Parameters

Careful with Isabelle-generated names

1. � x. � y. x = y
apply (rule �I)
1. �x. �y. x = y
apply (rule tac x = ”x” in �I)

What if the above used in context which already knows
some x? Instead:

apply (rename tac xxx)
1. �xxx. �y. x = y
apply (rule tac x = ”xxx” in �I)

Forward Proof

”Forward” rule: A1 � A
Subgoal: 1. � B1 ; ... ; Bm � � C

Substitution: σ(Bi) == σ(A1)
New subgoal: 1. σ(� B1 ; ... ; Bn ; A � � C)

Command:
apply (frule <rule>)

Like frule but deletes Bi:
apply (drule <rule>)

