Material from L.

Course 2D1453, 2006-07

Advanced Formal Methods

Lecture 7: Isabelle — Sets

Mads Dam
KTH/CSC

Paulson

Basic Constructions

types 'a set ="a — bool
Note that HOL sets are always typed

Easy to define basic set constructions:
0 ::'a set = Ax. false

{th =Ax.x=t

te A=At

ACB=Vx.Ax—Bx
AUB=Ax. =(AXx) » Bx

XeA Px=¥x.xeA—Px
IXeA PXx=3IX.X€e AAPX

Exercise 1:

Exercises

Represent in Isabelle the following set operations:

1. AnB

2. NyeaBX U aBX

3. insert::’

o = o set="a set

Proof Rules

Prove lemmas following natural deduction-style introduction
and elimination rules:

subsetl: (Ax.xe A=x€eB)=ACB
subsetE: [ACB;xc A]=x€B
balll: (Ax.xe A=Px)=VxeA Px
ballE: [V x e A.Px;xeA]=Px

etc. etc.

Finite Sets

Inductive definition:

* The empty set is finite

» Adding an element to a finite set produces a finite set
» These are the only finite sets

HOL encodi

consts Fin :

ng:
:'o set set

inductive Fin

Intros
0 € Fin

A € Fin = inserta A € Fin

Example: Even Numbers

Inductively:

* Oiseven

e Ifniseventhensoisn+2

« These are the only even numbers

In Isabelle HOL:
consts Ev :: nat set
inductive Ev
intros
0€Ev
neEv=n+2¢cEv

Inductively Defined Sets

Definition mechanism:

» Define carrier set

» Declare set to be inductively defined
» Declare introduction methods

Declaration inductive tells Isabelle to produce a number of
proof rules:

* Introduction rules

* Induction rules

» Elimination rules (case construction)
* Rule inversion rules

Example: Proof by Induction

Definition of set Ev produces induction principle

GoalmeEv=m+meEv

Proof:

e m=0—-0+0€Ev

e m=n+2andneEvandmeEvandn+necEv
=>m+m=n+2)+(n+2)=((n+n)+2)+2€cEv

Rule Induction for Ev

Toprovene Ev="Pn

by rule induction on n € Ev we must prove
« PO

* Pn=P(n+2)

Isabelle-generated induction principle:
[neEv;PO;AN.Pn=P(n+2)]=Pn

An elimination rule for Ev!

Rule Inversion

Isabelle proves this by induction:

ev.cases:

[neky;
n=0=P;
Am.[n=Suc(Sucm);meEv]=P]=P

inductive_.cases <Name>: Suc(Suc n) € Ev

Instantiates even.cases to produce:

<Name>: [Suc(Sucn)€Ev;ncEv=P] =P
Equivalently:

Suc(Sucn) € Ev = n € Ev

Mutual Induction

Even and odd numbers:

consts Ev :: nat set
Odd :: nat set
inductive Ev Odd
intros
zero: 0 € Ev
evenl:n € Odd = Suc n € Ev
oddl: n € Ev = Suc n € Odd

Exercise

Exercise 2: Define a recursive datatype of implicational
formulas containing constants tt and ff and binary
constructor -> (infixed, probably, for readability). Define
inductively the set of provable formulas as the least set
containing, for all formulas F, G, H, the formulas

F->F

F->(G->F)

(F->(G->H))->(F->G)->(F->H)
and closed under modus ponens (F and F -> G in the set
implies G in the set).
Formulate a predicate "valid” on formulas, and show, in
Isabelle, that all provable formulas a valid.

