
2D1454 Semantics of Programming Languages

Examination Problems
with solution sketches
19 December 2006

Dilian Gurov
KTH CSC

tel: 08-790 8198

1. Let us extend the simple imperative programming language IMP with threads by adding the statement 6p
thread c end. The intended behaviour of this statement is that it generates a new thread executing
command c. Multiple threads are executed non-deterministically: At any point of an execution, any
of the threads can become active (that is, be scheduled for execution).

(a) Give an abstract machine semantics (see lecture notes) for IMP with threads. Configurations
will now have multisets Γ of stacks of commands (one stack per thread), and transitions will
have the shape 〈Γ, σ〉 →AM 〈Γ′, σ′〉. Configurations 〈∅, σ〉 can be abbreviated as σ. If we take a
formal-sum notation for multisets (where, for example, 2a+3b denotes the multiset {a, a, b, b, b}),
we could give (for example) the following axiom for skip:

〈(skip · γ) + Γ, σ〉 →AM 〈γ + Γ, σ〉

Solution: The rules are almost identical to the ones presented in class for IMP without threads,
but, as in the case for skip given above, have an additional +Γ component in the configurations.
The only interesting rule is the (new) rule for thread c end:

〈(thread c end · γ) + Γ, σ〉 →AM 〈c + γ + Γ, σ〉

(b) Use your semantics to execute the program thread X := 0 end;X := 1 starting from an arbitrary
initial state σ. Clearly identify the rules used in the derivation.
Solution: The execution can be presented schematically as:

〈thread X := 0 end;X := 1, σ〉
→AM 〈thread X := 0 end ·X := 1, σ〉
→AM 〈(X := 0) + (X := 1), σ〉

→AM 〈X := 1, σ[0/X]〉 →AM σ[1/X]
→AM 〈X := 0, σ[1/X]〉 →AM σ[0/X]

Notice the non-deterministic branching at the (third) configuration 〈(X := 0) + (X := 1), σ〉!

2. Consider the big-step operational semantics of IMP. 6p

(a) Show that ‖− 〈while b do c, σ〉 → σ′ implies ‖− 〈b, σ′〉 → false. You will need to use a special
kind of induction here, namely (mathematical) induction on the depth of the derivation trees for
transitions 〈while b do c, σ〉 → σ′. (That is, you assume that ‖− 〈b, σ′〉 → false holds whenever
a transition of the shape 〈while b do c, σ〉 → σ′ is derivable with a derivation tree of depth n,
and you prove that then this also holds for n + 1.)
Solution: In the base case n = 0 the result holds vacuously, since there are no derivations of
depth 0 (that is, axioms) for transitions of the shape 〈while b do c, σ〉 → σ′. For the induction
case, assume that for all σ, σ′ ∈ Σ, ‖− 〈b, σ′〉 → false holds whenever 〈while b do c, σ〉 → σ′ is
derivable with a derivation tree with depth n (induction hypothesis). Assume 〈while b do c, σ〉 →
σ′ is derivable with a derivation tree with depth n + 1. (We show that ‖− 〈b, σ′〉 → false.) We
consider the two possible cases for the last rule applied in the derivation of 〈while b do c, σ〉 → σ′.
Case 1: Last rule is whileF . Then ‖− 〈b, σ〉 → false and σ′ = σ, and hence ‖− 〈b, σ′〉 → false.
Case 2: Last rule is whileT . Then, for some σ′′, 〈while b do c, σ′′〉 → σ′ is derivable with a
derivation of depth n. By the induction hypothesis, ‖− 〈b, σ′〉 → false.



(b) Consider the transformation on IMP programs from program while b do (while b do c) to
program while b do c. Show that the transformation is a semantics-preserving optimization by
proving that the two programs are equivalent.
Solution: The proof is standard, by transforming every derivation of 〈while b do (while b do c), σ〉 →
σ′ to a derivation of 〈while b do c, σ〉 → σ′, and vice versa, by using (a).

3. Consider the IMP program c: 5p

while ¬(X = Y ) do (X := X + 1;Y := Y − 1)

Use the big-step operational semantics of IMP to prove that the program terminates for all (initial)

states in S
def
= {σ ∈ Σ | ∃k ≥ 0. σ(Y ) = σ(X) + 2k}.

Solution: Define ≺⊆ S × S as follows:

σ ≺ σ′ def⇔ σ(Y )− σ(X) < σ′(Y )− σ′(X)

Since σ(Y ) − σ(X) ≥ 0 for all σ ∈ Σ, ≺ is well-founded. We use well-founded induction to prove
∀σ ∈ S. ∃σ′ ∈ Σ. ‖− 〈c, σ〉 → σ′.

Let σ ∈ S, and let ∃σ′ ∈ Σ. ‖− 〈c, σ′′〉 → σ′ hold for all σ′′ ∈ S such that σ′′ ≺ σ (induction hypothesis).

Case 1: σ(X) = σ(Y ). It is straightforward to produce a direct derivation of 〈c, σ〉 → σ, with last rule
applied whileF , and hence ∃σ′ ∈ Σ. ‖− 〈c, σ〉 → σ′.

Case 2: σ(X) 6= σ(Y ). Again, we construct a derivation of 〈c, σ〉 → σ′, with last rule applied whileT .
The sub-derivations of the first two premises 〈¬(X = Y ), σ〉 → true and 〈X := X + 1;Y := Y − 1, σ〉 →
σ[σ(X)+ 1/X, σ(Y )− 1/Y ] are easy to construct. The existence of a sub-derivation for the third sub-
goal 〈c, σ[σ(X) + 1/X, σ(Y )− 1/Y ]〉 → σ′ is guaranteed (for some σ′!) by the induction hypothesis,
since σ[σ(X)+1/X, σ(Y )−1/Y ] ∈ S and σ[σ(X)+1/X, σ(Y )−1/Y ] ≺ σ whenever σ ∈ S. Therefore
∃σ′ ∈ Σ. ‖− 〈c, σ〉 → σ′.

4. Consider the following IMP program c for computing sum(n)
def
=

∑n
k=0 k . 4p

Z := 0;

X := 1;

while X ≤ Y do

Z := Z + X;

X := X + 1

Use the axiomatic semantics of IMP to verify that the program meets the specification

{Y = n ∧ Y ≥ 0} c {Z = sum(n)}

(a) Present the proof (preferrably) as a proof tableau (that is, as a fully annotated program).
Solution: The annotation is standard once one has chosen a suitable loop invariant. One such
choice is X ≤ Y + 1 ∧ Y = n ∧ Z = sum(X − 1 ).

(b) Identify and justify the resulting proof obligations.
Solution: The standard annotation produces 3 proof obligations, which are easily discharged.
The main property needed here is sum(m) = sum(m − 1 ) + m.

5. Consider the axiomatic semantics of IMP. Show that for all commands c ∈ Com and all assertions 4p
A ∈ Assn,

‖− {A} c {true}



Solution: We use structural induction on commands c to show ∀c ∈ Com.∀A ∈ Assn. ‖−{A}c{true}.
Here we only show the most interesting case c ≡ while b do c′. Assume ∀A ∈ Assn. ‖− {A} c′ {true}
(induction hypothesis). Let A ∈ Assn. Consider the (incomplete) derivation:

√

|= A ⇒ true
{true ∧ b} c′ {true}

{true}while b do c′ {true ∧ ¬b}

√

|= true ∧ ¬b ⇒ true
{A}while b do c′ {true}

The two resulting proof obligations hold trivially, while the sub-goal {true ∧ b} c′ {true} is derivable
due to the induction hypothesis. Hence ∀A ∈ Assn. ‖− {A}while b do c′ {true}.

6. Consider again the IMP program from problem 4 above. Use the fixed–point characterization of the 5p
denotational semantics of while–loops of IMP and the Fixed–Point Theorem to iteratively compute
the denotation of the above program. That is:

(a) Determine the transformer Γ for the while loop. Simplify it as much as possible.
Solution: After simplification, we obtain from the definition of Γb,c:

Γ(F ) = {(σ, σ′) | σ(X) ≤ σ(Y ) ∧ (σ[σ(Z) + σ(X)/Z, σ(X) + 1/X], σ′) ∈ F}
∪ {(σ, σ) | σ(X) > σ(Y )}

(b) Use Γ to compute the first three (non–empty) approximants of the fixed–point computation.

(c) Guess the general shape of the i–th approximant.
Solution: The i–th approximant can be presented as:
Γi(∅) = {(σ, σ[σ(Z) + sum(σ(X ), σ(Y ))/Z , σ(Y ) + 1/X ]) | 0 ≤ σ(Y )− σ(X ) ≤ i − 2}

∪ {(σ, σ) | σ(X) > σ(Y )}
where we use sum(m,n) to denote

∑n
k=m k.

(d) Use this to obtain the limit value (which is the denotation of the while loop).
Solution: The limit of the fixed-point construction is:⋃

i∈ω Γi(∅) = {(σ, σ[σ(Z) + sum(σ(X ), σ(Y ))/Z , σ(Y ) + 1/X ]) | σ(X ) ≤ σ(Y )}
∪ {(σ, σ) | σ(X) > σ(Y )}

(e) Compute the denotation of the whole program.
Solution: For the whole program, we obtain:
C[[c]] = {(σ, σ[sum(1 , σ(Y ))/Z , σ(Y ) + 1/X ]) | σ(Y ) ≥ 1}

∪ {(σ, σ[0/Z, 1/X]) | σ(Y ) < 1}


