DD2454 Semantics of Programming Languages

EXAMINATION PROBLEMS Dilian Gurov
WITH SOLUTION SKETCHES KTH CSC
19 December 2007 tel: 08-790 8198
1. Consider the transformation on IMP programs, from command

if by then (if b; then ¢y else ¢;) else ¢;

to command
if by A by then ¢y else ¢

Use the big-step operational semantics of IMP to show that the transformation is a semantics pre-
serving optimization, by proving equivalence of the two commands.

Solution: (Sketch) Let’s abbreviate the first command by ¢ and the second by ¢’. We have to show
¢~ d, that is Vo,o'. (| (¢,0) = o' < | (d,0) — o).

In the first direction, we show that for any derivation of (¢, o) — o’ there is a derivation of (¢/, o) — o’.
To this end, we consider four cases, depending on the values to which by and b; evaluate in state o.
In each case, we show how the sub-derivations of (¢,0) — ¢’ can be combined into a derivation of
(,0) — o’. The second dicrection is established by the same derivation schemes.

2. Let us extend the simple imperative programming language IMP with another iterative control state-
ment, namely the command
for X in m..n do ¢

where m and n are numbers, with the expected behaviour: the body c of the statement is executed
consecutively for all values of location X from m to n. So, at each iteration, X is assigned the
corresponding value, which is incremented by one after each execution of the body. If m > n the
command behaves as skip.

(a) Consider the small-step operational semantics of IMP (see lecture notes and handouts). Define
the meaning of the new command by providing rules for it.

Solution: Two rules suffice to capture the intended meaning of the new command:

Forl <
OR (for X in m..n do ¢,0) —¢ (¢;for X in (m +1)..n do ¢,o[m/X]) men

For2
OR (for X in m..n do ¢,0) —g o men

(b) Use your semantics to execute the program
Y =0;for Xinl.2doY =Y+ X

from an arbitrary initial state o to a final configuration. Show all derivations.

Solution: (Sketch) There are six small-step transitions (with their corresponding derivations),
the last one leading to the final configuration o[2/X,3/Y].

3. Let Com,, denote the set of whilefree commands of IMP. Prove termination of execution of
while—free programs:
Ve e Com,. Vo€ X. 3" € X. |- (¢,0) — o’

by using structural induction.

Solution: We have to consider in turn each of the four formation rules for while—free programs. Here
we show the case for the third formation rule only, namely sequential composition.

Case ¢ = ¢p; c1. Since we are applying structural induction, the induction hypotheses are:

Vo € ¥.30" € £. |- (cp,0) — ¢’ (IH1) and Vo € ¥. 30" € . |- (c1,0) — o' (IH2). We want to
show Vo € ¥. 30" € 3. ||— (co;¢1,0) — o'. To this end, assume o € X is an arbitrary state. By
(IH1), there must be ¢/ € ¥ so that |~ (cp,0) — o’ (1). Then, by (IH2), there must be ¢” € ¥ so
that |- {(c1,0’) — ¢” (2). From (1) and (2), by rule SEQ follows that we can derive (cg;cy1,0) — o”.
Therefore 30’ € X. |- (co;¢1,0) — o’

4. Consider the IMP program while true do ¢, where ¢ is an arbitrary command. Execution of the
program does not terminate from any initial state o. Prove this in two ways, based on:

(a) the denotational semantics of IMP;

(b) the axiomatic semantics of IMP.

In both cases, as a first step express the non-termination statement accordingly.
Solution: (Sketch)

(a) In the denotational semantics of IMP, non—termination of while true do ¢ from any initial
state o is expressed as Vo € X. =30’ € X. (0,0") € C[while true do], which is equivalent
to C[while true do ¢] = 0; call this equality (A). Since C[while true do] is defined as the
least fixed-point of T'¢rue,c; Which by the Fixed-Point Theorem is equal to U, ¢, I'frueo(9), we
can prove equality (A) by showing tpue () = 0, since then all approximants (and thus also
their union) are equal to the empty set. Showing I'tryec(l)) = 0 is easy and simply refers to the
definition of C[].

(b) In the axiomatic semantics of IMP, non—termination of while true do ¢ from any initial state

o is expressed by the Hoare triple {¢rue} while true do c{false}. In other words, we need to
show Ve € Com. |- {true} while true do ¢ {false}.
In class, we already showed that Ve € Com.VA € Assn. |- {A} ¢ {true}. Therefore, by taking A
to be trueA true, for any command c there is a derivation of the Hoare triple {true A true} c{true}.
Such a derivation is easily extended to a derivation of {t¢rue} while true do ¢ {false} by applying
the while—rule followed by the consequence rule.

5. Consider the following program in the light of the denotational semantics of IMP:
while —(X < 0) do
if Y < X then
X=X-Y
else

X=X-1

(a) Determine the transformer I' for the while-loop. Simplify it as much as possible.
Solution: After simplification, we obtain:
I(F) = {(6,0")|o(X)>0A0(Y)<o(X)A(clo(X)—0(Y)/X],0') € F}
U {(o,0)]| 0(X)>0A0(Y)>0c(X)A(olo(X)—-1/X],0') € F}
U {(o,0) | o(X) <0}
(b) UseT to compute the first two non—empty approximants of the fixed—point computation. Simplify
these as much as possible.
Solution: After simplification, we obtain:

I'0) = {(o0.0)]o(X) <0}

() {(0,00/X])) | 0(X) >0A0(Y) =
{(0,0]0/X]) |o(X)=1A0(Y) >
{(o,0) | o(X) <0}

(¢) Argue for correctness of your answers based on the intuitive understanding of what fixed-point
approximants correspond to in terms of execution of a while—loop.

a(X)}
a(X)}

cCcl

Solution: As explained in class, the i—th approximant of I" contains exactly the state pairs (o, ")
for which the while loop, when executed from o, terminates in ¢’ by executing the body of the
loop at most ¢ — 1 times.

The above sets I''(()) and T'?(()) indeed capture this for 4 = 1 and i = 2: the loop terminates
without executing the body, in the start state o, exactly when o(X) < 0, and terminates by
executing the body just once, in state o[0/X], whenever o(X) > 0Ac(Y) = o(X) (that is, when
the then-branch is taken) or o(X) =1A0(Y) > o(X) (that is, when the else-branch is taken).

6. Consider the IMP program MED for computing the average value of two integers:
if X <Y then
while -(X =Y) do
X =X+1;
Y =Y-1
else
while -(X =Y) do
X:=X-1;
Y =Y+1

Notice that the program does not terminate from all initial states.

(a) Verify that the program meets the specification

{X:m/\Y:n}MED{X: ern}

2

Present the proof as a proof tableau (that is, as a fully annotated program).
Solution: The annotations are easily obtained after choosing suitable loop invariants. For both
loops, X +Y =m + n is a suitable choice.

(b) Identify and justify the resulting proof obligations.

(¢) Improve the specification by strengthening the pre-condition to describe the set of all states from
which MED terminates.

Solution: The program terminates exactly for all initial states in which the values of X and Y
differ by an even number. This could be formalized for example as follows:

{X:m/\Y:n/\EIkJGw.m:n—i—Qk}MED{X: ern}

2

7. Consider the axiomatic semantics of IMP. Recall that validity of Hoare triples {A} ¢ {B} is defined
as:
= {A (B} Y Vo0’ €S (0= A A (0,0)) €Cld] = o & B)

where for simplicity we assume that no meta-variables are used (and hence no interpretations I are
needed). Now, prove that = {A} while b do ¢{B} implies = A = BV b.

Solution: Proof by contradiction. Assume = {A} while b do ¢{B} (1), and assume (for the sake
of arriving at a contradiction) that = A = B V b. Then, there must be a state o such that ¢ = A
(2) but 0 = B (3) and o [~ b (4). From (4), since o = b if and only if B[b] (o) = true, we obtain
that B[b] (o) = false. By the definition of the denotational semantics of while loops, we then have
(0,0) € C[while b do ¢] (5). Then, by the definition of (1), assumption (2) and from (5), it follows
that o = B. But this contradicts assumption (3).

