DD2454 Semantics of Programming Languages

EXAMINATION PROBLEMS WITH SOLUTION SKETCHES 19 December 2007 Dilian Gurov KTH CSC tel: 08-790 8198

2p

1. Consider the transformation on IMP programs, from command

if b_0 then (if b_1 then c_0 else c_1) else c_1

to command

if $b_0 \wedge b_1$ then c_0 else c_1

Use the big-step operational semantics of **IMP** to show that the transformation is a semantics preserving optimization, by proving equivalence of the two commands.

Solution: (Sketch) Let's abbreviate the first command by c and the second by c'. We have to show $c \sim c'$, that is $\forall \sigma, \sigma'$. ($\parallel \langle c, \sigma \rangle \rightarrow \sigma' \Leftrightarrow \parallel \langle c', \sigma \rangle \rightarrow \sigma'$).

In the first direction, we show that for any derivation of $\langle c, \sigma \rangle \to \sigma'$ there is a derivation of $\langle c', \sigma \rangle \to \sigma'$. To this end, we consider four cases, depending on the values to which b_0 and b_1 evaluate in state σ . In each case, we show how the sub-derivations of $\langle c, \sigma \rangle \to \sigma'$ can be combined into a derivation of $\langle c', \sigma \rangle \to \sigma'$. The second dicrection is established by the same derivation schemes.

2. Let us extend the simple imperative programming language **IMP** with another iterative control state- 5p ment, namely the command

for X in m.n do c

where m and n are numbers, with the expected behaviour: the body c of the statement is executed consecutively for all values of location X from m to n. So, at each iteration, X is assigned the corresponding value, which is incremented by one after each execution of the body. If m > n the command behaves as **skip**.

(a) Consider the small-step operational semantics of **IMP** (see lecture notes and handouts). Define the meaning of the new command by providing rules for it.

Solution: Two rules suffice to capture the intended meaning of the new command:

For 1
For 2
$$-\frac{-}{\langle \text{for } X \text{ in } m..n \text{ do } c, \sigma \rangle \rightarrow_S \langle c; \text{for } X \text{ in } (m+1)..n \text{ do } c, \sigma[m/X] \rangle} m \le n$$

(b) Use your semantics to execute the program

Y := 0; for X in 1..2 do Y := Y + X

from an arbitrary initial state σ to a final configuration. Show all derivations. **Solution:** (Sketch) There are six small-step transitions (with their corresponding derivations), the last one leading to the final configuration $\sigma[2/X, 3/Y]$. 3. Let Com_{WF} denote the set of while-free commands of IMP. Prove termination of execution of 4p while-free programs:

$$\forall c \in Com_{WF}, \forall \sigma \in \Sigma, \exists \sigma' \in \Sigma, \parallel \neg \langle c, \sigma \rangle \to \sigma'$$

by using structural induction.

Solution: We have to consider in turn each of the four formation rules for **while**–free programs. Here we show the case for the third formation rule only, namely sequential composition.

Case $c \equiv c_0; c_1$. Since we are applying structural induction, the induction hypotheses are: $\forall \sigma \in \Sigma. \exists \sigma' \in \Sigma. \parallel - \langle c_0, \sigma \rangle \rightarrow \sigma'$ (IH1) and $\forall \sigma \in \Sigma. \exists \sigma' \in \Sigma. \parallel - \langle c_1, \sigma \rangle \rightarrow \sigma'$ (IH2). We want to show $\forall \sigma \in \Sigma. \exists \sigma' \in \Sigma. \parallel - \langle c_0; c_1, \sigma \rangle \rightarrow \sigma'$. To this end, assume $\sigma \in \Sigma$ is an arbitrary state. By (IH1), there must be $\sigma' \in \Sigma$ so that $\parallel - \langle c_0, \sigma \rangle \rightarrow \sigma'$ (1). Then, by (IH2), there must be $\sigma'' \in \Sigma$ so that $\parallel - \langle c_1, \sigma' \rangle \rightarrow \sigma''$ (2). From (1) and (2), by rule SEQ follows that we can derive $\langle c_0; c_1, \sigma \rangle \rightarrow \sigma''$. Therefore $\exists \sigma' \in \Sigma. \parallel - \langle c_0; c_1, \sigma \rangle \rightarrow \sigma'$.

- 4. Consider the **IMP** program while true do c, where c is an arbitrary command. Execution of the <u>bp</u> program does not terminate from any initial state σ . Prove this in two ways, based on:
 - (a) the denotational semantics of **IMP**;
 - (b) the axiomatic semantics of **IMP**.

In both cases, as a first step express the non-termination statement accordingly.

Solution: (Sketch)

- (a) In the denotational semantics of **IMP**, non-termination of **while true do** c from any initial state σ is expressed as $\forall \sigma \in \Sigma$. $\neg \exists \sigma' \in \Sigma$. $(\sigma, \sigma') \in C[[$ while true do c]], which is equivalent to C[[while true do $c]] = \emptyset$; call this equality (A). Since C[[while true do c]] is defined as the least fixed-point of $\Gamma_{\mathbf{true},c}$, which by the Fixed-Point Theorem is equal to $\bigcup_{n \in \omega} \Gamma^n_{\mathbf{true},c}(\emptyset)$, we can prove equality (A) by showing $\Gamma_{\mathbf{true},c}(\emptyset) = \emptyset$, since then all approximants (and thus also their union) are equal to the empty set. Showing $\Gamma_{\mathbf{true},c}(\emptyset) = \emptyset$ is easy and simply refers to the definition of $C[[\cdot]]$.
- (b) In the axiomatic semantics of IMP, non-termination of while true do c from any initial state σ is expressed by the Hoare triple {true} while true do c {false}. In other words, we need to show ∀c ∈ Com. ||- {true} while true do c {false}. In class, we already showed that ∀c ∈ Com. ∀A ∈ Assn. ||- {A} c {true}. Therefore, by taking A to be true ∧ true, for any command c there is a derivation of the Hoare triple {true ∧ true} c {true}. Such a derivation is easily extended to a derivation of {true} while true do c {false} by applying the while-rule followed by the consequence rule.

5. Consider the following program in the light of the denotational semantics of IMP:

while $\neg (X \le 0)$ do if $Y \le X$ then X := X - Yelse X := X - 1 4p

- (a) Determine the transformer Γ for the **while**-loop. Simplify it as much as possible. Solution: After simplification, we obtain:
 - $$\begin{split} \Gamma(F) &= \{(\sigma, \sigma') \mid \sigma(X) > 0 \land \sigma(Y) \leq \sigma(X) \land (\sigma[\sigma(X) \sigma(Y)/X], \sigma') \in F\} \\ &\cup \{(\sigma, \sigma') \mid \sigma(X) > 0 \land \sigma(Y) > \sigma(X) \land (\sigma[\sigma(X) 1/X], \sigma') \in F\} \\ &\cup \{(\sigma, \sigma) \mid \sigma(X) \leq 0\} \end{split}$$
- (b) Use Γ to compute the first two non–empty approximants of the fixed–point computation. Simplify these as much as possible.

Solution: After simplification, we obtain:

$$\begin{split} \Gamma^{1}(\emptyset) &= \{(\sigma, \sigma) \mid \sigma(X) \leq 0\} \\ \Gamma^{2}(\emptyset) &= \{(\sigma, \sigma[0/X]) \mid \sigma(X) > 0 \land \sigma(Y) = \sigma(X)\} \\ &\cup \{(\sigma, \sigma[0/X]) \mid \sigma(X) = 1 \land \sigma(Y) > \sigma(X)\} \\ &\cup \{(\sigma, \sigma) \mid \sigma(X) \leq 0\} \end{split}$$

(c) Argue for correctness of your answers based on the intuitive understanding of what fixed-point approximants correspond to in terms of execution of a **while**–loop.

Solution: As explained in class, the *i*-th approximant of Γ contains exactly the state pairs (σ, σ') for which the while loop, when executed from σ , terminates in σ' by executing the body of the loop at most i - 1 times.

The above sets $\Gamma^1(\emptyset)$ and $\Gamma^2(\emptyset)$ indeed capture this for i = 1 and i = 2: the loop terminates without executing the body, in the start state σ , exactly when $\sigma(X) \leq 0$, and terminates by executing the body just once, in state $\sigma[0/X]$, whenever $\sigma(X) > 0 \land \sigma(Y) = \sigma(X)$ (that is, when the then–branch is taken) or $\sigma(X) = 1 \land \sigma(Y) > \sigma(X)$ (that is, when the else–branch is taken).

6. Consider the **IMP** program MED for computing the average value of two integers:

if
$$X \le Y$$
 then
while $\neg(X = Y)$ do
 $X := X + 1;$
 $Y := Y - 1$
else
while $\neg(X = Y)$ do
 $X := X - 1;$
 $Y := Y + 1$

Notice that the program does not terminate from all initial states.

(a) Verify that the program meets the specification

$$\left\{X=m\wedge Y=n\right\}\operatorname{Med}\left\{X=\frac{m+n}{2}\right\}$$

Present the proof as a proof tableau (that is, as a fully annotated program). Solution: The annotations are easily obtained after choosing suitable loop invariants. For both loops, X + Y = m + n is a suitable choice.

- (b) Identify and justify the resulting proof obligations.
- (c) Improve the specification by strengthening the pre-condition to describe the set of all states from which MED terminates.

Solution: The program terminates exactly for all initial states in which the values of X and Y differ by an even number. This could be formalized for example as follows:

$$\{X = m \land Y = n \land \exists k \in \omega. \ m = n + 2k\} \operatorname{Med} \left\{X = \frac{m+n}{2}\right\}$$

7. Consider the axiomatic semantics of **IMP**. Recall that validity of Hoare triples $\{A\} c \{B\}$ is defined 4p as:

$$\models \{A\} c \{B\} \stackrel{aef}{\Leftrightarrow} \forall \sigma, \sigma' \in \Sigma. \ (\sigma \models A \land (\sigma, \sigma') \in \mathcal{C}\llbracket c \rrbracket \Rightarrow \sigma' \models B)$$

where for simplicity we assume that no meta-variables are used (and hence no interpretations I are needed). Now, prove that $\models \{A\}$ while b do $c\{B\}$ implies $\models A \Rightarrow B \lor b$.

Solution: Proof by contradiction. Assume $\models \{A\}$ while *b* do $c\{B\}$ (1), and assume (for the sake of arriving at a contradiction) that $\not\models A \Rightarrow B \lor b$. Then, there must be a state σ such that $\sigma \models A$ (2) but $\sigma \not\models B$ (3) and $\sigma \not\models b$ (4). From (4), since $\sigma \models b$ if and only if $\mathcal{B}[\![b]\!](\sigma) = true$, we obtain that $\mathcal{B}[\![b]\!](\sigma) = false$. By the definition of the denotational semantics of while loops, we then have $(\sigma, \sigma) \in \mathcal{C}[\![\text{while } b \text{ do } c]\!]$ (5). Then, by the definition of (1), assumption (2) and from (5), it follows that $\sigma \models B$. But this contradicts assumption (3).