
DD2454 Semantics of Programming Languages

Examination Problems
with solution sketches
19 December 2007

Dilian Gurov
KTH CSC

tel: 08-790 8198

1. Consider the transformation on IMP programs, from command 2p

if b0 then (if b1 then c0 else c1) else c1

to command
if b0 ∧ b1 then c0 else c1

Use the big-step operational semantics of IMP to show that the transformation is a semantics pre-
serving optimization, by proving equivalence of the two commands.

Solution: (Sketch) Let’s abbreviate the first command by c and the second by c′. We have to show
c ∼ c′, that is ∀σ, σ′. (‖− 〈c, σ〉 → σ′ ⇔ ‖− 〈c′, σ〉 → σ′).

In the first direction, we show that for any derivation of 〈c, σ〉 → σ′ there is a derivation of 〈c′, σ〉 → σ′.
To this end, we consider four cases, depending on the values to which b0 and b1 evaluate in state σ.
In each case, we show how the sub-derivations of 〈c, σ〉 → σ′ can be combined into a derivation of
〈c′, σ〉 → σ′. The second dicrection is established by the same derivation schemes.

2. Let us extend the simple imperative programming language IMP with another iterative control state- 5p
ment, namely the command

for X in m..n do c

where m and n are numbers, with the expected behaviour: the body c of the statement is executed
consecutively for all values of location X from m to n. So, at each iteration, X is assigned the
corresponding value, which is incremented by one after each execution of the body. If m > n the
command behaves as skip.

(a) Consider the small-step operational semantics of IMP (see lecture notes and handouts). Define
the meaning of the new command by providing rules for it.
Solution: Two rules suffice to capture the intended meaning of the new command:

For1
−

〈for X in m..n do c, σ〉 →S 〈c; for X in (m + 1)..n do c, σ[m/X]〉 m ≤ n

For2
−

〈for X in m..n do c, σ〉 →S σ
m > n

(b) Use your semantics to execute the program

Y := 0; for X in 1..2 do Y := Y + X

from an arbitrary initial state σ to a final configuration. Show all derivations.
Solution: (Sketch) There are six small-step transitions (with their corresponding derivations),
the last one leading to the final configuration σ[2/X, 3/Y].

3. Let ComWF denote the set of while–free commands of IMP. Prove termination of execution of 4p
while–free programs:

∀c ∈ ComWF . ∀σ ∈ Σ . ∃σ′ ∈ Σ . ‖− 〈c, σ〉 → σ′

by using structural induction.

Solution: We have to consider in turn each of the four formation rules for while–free programs. Here
we show the case for the third formation rule only, namely sequential composition.

Case c ≡ c0; c1. Since we are applying structural induction, the induction hypotheses are:
∀σ ∈ Σ. ∃σ′ ∈ Σ. ‖− 〈c0, σ〉 → σ′ (IH1) and ∀σ ∈ Σ. ∃σ′ ∈ Σ. ‖− 〈c1, σ〉 → σ′ (IH2). We want to
show ∀σ ∈ Σ. ∃σ′ ∈ Σ. ‖− 〈c0; c1, σ〉 → σ′. To this end, assume σ ∈ Σ is an arbitrary state. By
(IH1), there must be σ′ ∈ Σ so that ‖− 〈c0, σ〉 → σ′ (1). Then, by (IH2), there must be σ′′ ∈ Σ so
that ‖− 〈c1, σ

′〉 → σ′′ (2). From (1) and (2), by rule Seq follows that we can derive 〈c0; c1, σ〉 → σ′′.
Therefore ∃σ′ ∈ Σ. ‖− 〈c0; c1, σ〉 → σ′.

4. Consider the IMP program while true do c, where c is an arbitrary command. Execution of the 6p
program does not terminate from any initial state σ. Prove this in two ways, based on:

(a) the denotational semantics of IMP;

(b) the axiomatic semantics of IMP.

In both cases, as a first step express the non-termination statement accordingly.

Solution: (Sketch)

(a) In the denotational semantics of IMP, non–termination of while true do c from any initial
state σ is expressed as ∀σ ∈ Σ. ¬∃σ′ ∈ Σ. (σ, σ′) ∈ C[[while true do c]], which is equivalent
to C[[while true do c]] = ∅; call this equality (A). Since C[[while true do c]] is defined as the
least fixed–point of Γtrue,c, which by the Fixed–Point Theorem is equal to

⋃
n∈ω Γn

true,c(∅), we
can prove equality (A) by showing Γtrue,c(∅) = ∅, since then all approximants (and thus also
their union) are equal to the empty set. Showing Γtrue,c(∅) = ∅ is easy and simply refers to the
definition of C[[·]].

(b) In the axiomatic semantics of IMP, non–termination of while true do c from any initial state
σ is expressed by the Hoare triple {true}while true do c {false}. In other words, we need to
show ∀c ∈ Com. ‖− {true}while true do c {false}.
In class, we already showed that ∀c ∈ Com. ∀A ∈ Assn. ‖− {A} c {true}. Therefore, by taking A
to be true∧true, for any command c there is a derivation of the Hoare triple {true ∧ true} c {true}.
Such a derivation is easily extended to a derivation of {true}while true do c {false} by applying
the while–rule followed by the consequence rule.

5. Consider the following program in the light of the denotational semantics of IMP: 4p

while ¬(X ≤ 0) do

if Y ≤ X then

X := X − Y

else

X := X − 1

(a) Determine the transformer Γ for the while–loop. Simplify it as much as possible.
Solution: After simplification, we obtain:
Γ(F) = {(σ, σ′) | σ(X) > 0 ∧ σ(Y) ≤ σ(X) ∧ (σ[σ(X)− σ(Y)/X], σ′) ∈ F}

∪ {(σ, σ′) | σ(X) > 0 ∧ σ(Y) > σ(X) ∧ (σ[σ(X)− 1/X], σ′) ∈ F}
∪ {(σ, σ) | σ(X) ≤ 0}

(b) Use Γ to compute the first two non–empty approximants of the fixed–point computation. Simplify
these as much as possible.
Solution: After simplification, we obtain:
Γ1(∅) = {(σ, σ) | σ(X) ≤ 0}
Γ2(∅) = {(σ, σ[0/X]) | σ(X) > 0 ∧ σ(Y) = σ(X)}

∪ {(σ, σ[0/X]) | σ(X) = 1 ∧ σ(Y) > σ(X)}
∪ {(σ, σ) | σ(X) ≤ 0}

(c) Argue for correctness of your answers based on the intuitive understanding of what fixed-point
approximants correspond to in terms of execution of a while–loop.
Solution: As explained in class, the i–th approximant of Γ contains exactly the state pairs (σ, σ′)
for which the while loop, when executed from σ, terminates in σ′ by executing the body of the
loop at most i− 1 times.
The above sets Γ1(∅) and Γ2(∅) indeed capture this for i = 1 and i = 2: the loop terminates
without executing the body, in the start state σ, exactly when σ(X) ≤ 0, and terminates by
executing the body just once, in state σ[0/X], whenever σ(X) > 0∧ σ(Y) = σ(X) (that is, when
the then–branch is taken) or σ(X) = 1 ∧ σ(Y) > σ(X) (that is, when the else–branch is taken).

6. Consider the IMP program Med for computing the average value of two integers: 5p

if X ≤ Y then

while ¬(X = Y) do

X := X + 1;

Y := Y − 1

else

while ¬(X = Y) do

X := X − 1;

Y := Y + 1

Notice that the program does not terminate from all initial states.

(a) Verify that the program meets the specification

{X = m ∧ Y = n}Med

{
X =

m + n

2

}
Present the proof as a proof tableau (that is, as a fully annotated program).
Solution: The annotations are easily obtained after choosing suitable loop invariants. For both
loops, X + Y = m + n is a suitable choice.

(b) Identify and justify the resulting proof obligations.

(c) Improve the specification by strengthening the pre-condition to describe the set of all states from
which Med terminates.
Solution: The program terminates exactly for all initial states in which the values of X and Y
differ by an even number. This could be formalized for example as follows:

{X = m ∧ Y = n ∧ ∃k ∈ ω. m = n + 2k}Med

{
X =

m + n

2

}

7. Consider the axiomatic semantics of IMP. Recall that validity of Hoare triples {A} c {B} is defined 4p
as:

|= {A} c {B} def⇔ ∀σ, σ′ ∈ Σ. (σ |= A ∧ (σ, σ′) ∈ C[[c]] ⇒ σ′ |= B)

where for simplicity we assume that no meta-variables are used (and hence no interpretations I are
needed). Now, prove that |= {A}while b do c {B} implies |= A ⇒ B ∨ b.

Solution: Proof by contradiction. Assume |= {A}while b do c {B} (1), and assume (for the sake
of arriving at a contradiction) that 6|= A ⇒ B ∨ b. Then, there must be a state σ such that σ |= A
(2) but σ 6|= B (3) and σ 6|= b (4). From (4), since σ |= b if and only if B[[b]] (σ) = true, we obtain
that B[[b]] (σ) = false. By the definition of the denotational semantics of while loops, we then have
(σ, σ) ∈ C[[while b do c]] (5). Then, by the definition of (1), assumption (2) and from (5), it follows
that σ |= B. But this contradicts assumption (3).

