
DD2454 Semantics of Programming Languages

– Additional Exercises –

Dilian Gurov
Royal Institute of Technology – KTH

e–mail: dilian@csc.kth.se

1 Operational Semantics of IMP

1. Consider the extension of IMP with a command read X that waits for a number to be entered (say,
from a keyboard), which is then assigned to location X.

Use the small–step operational semantics of IMP extended in this way (see lecture notes) to derive the
configuration space of the following program, starting from an arbitrary initial state σ and assuming
that only 0’s and 1’s are entered (the program then maintains in location X the sum modulo 2 of all
values entered so far).

X := 0;

while true do

read Y ;

if Y = 1 then X := 1−X else skip

Draw the configuration graph (as symmetrically as possible). Clearly identify the derivation of every
transition in the graph. You may omit duplicating or very similar derivations.

2. Consider the small–step operational semantics of IMP (see handouts). Let us extend the boolean
expressions of the language with the atomic (randomized) boolean expression brand, which evaluates
to both true and false. So, we extend the semantics with the two new axioms 〈brand, σ〉 → true
and 〈brand, σ〉 → false. Now, consider the program:

while true do

if brand then X := 1

else X := 0

Derive the configuration space of the program, that is, execute the program under the small-step
semantics, starting from a state σ such that σ(X) = 0. Draw the configuration graph.

Solution: Applying the rules of the small–step operational semantics, and taking into account that
σ = σ[0/X] when σ(X) = 0, we can derive 10 transitions between 8 configurations, 〈c, σ[0/X]〉 being
the initial configuration:

〈c, σ[0/X]〉 →S 〈if brand then X := 1 else X := 0; c, σ[0/X]〉
〈if brand then X := 1 else X := 0; c, σ[0/X]〉 →S 〈X := 1; c, σ[0/X]〉
〈if brand then X := 1 else X := 0; c, σ[0/X]〉 →S 〈X := 0; c, σ[0/X]〉
〈X := 0; c, σ[0/X]〉 →S 〈c, σ[0/X]〉
〈X := 1; c, σ[0/X]〉 →S 〈c, σ[1/X]〉
〈c, σ[1/X]〉 →S 〈if brand then X := 1 else X := 0; c, σ[1/X]〉
〈if brand then X := 1 else X := 0; c, σ[1/X]〉 →S 〈X := 1; c, σ[1/X]〉
〈if brand then X := 1 else X := 0; c, σ[1/X]〉 →S 〈X := 0; c, σ[1/X]〉
〈X := 0; c, σ[1/X]〉 →S 〈c, σ[0/X]〉
〈X := 1; c, σ[1/X]〉 →S 〈c, σ[1/X]〉

1

For instance, here is a derivation tree for the second transition:

−
〈brand, σ〉 → true

〈if brand then X := 1 else X := 0, σ[0/X]〉 →S 〈X := 1, σ[0/X]〉
〈if brand then X := 1 else X := 0; c, σ[0/X]〉 →S 〈X := 1; c, σ[0/X]〉

The configuration graph is simply a graph with the 8 configurations as nodes, and the 10 transitions
as arcs between the corresponding nodes.

3. Let us extend the simple imperative programming language IMP with threads by adding the statement
thread c end. The intended behaviour of this statement is that it generates a new thread executing
command c. Multiple threads are executed non-deterministically: At any point of an execution, any
of the threads can become active (that is, be scheduled for execution).

(a) Give an abstract machine semantics (see lecture notes) for IMP with threads. Configurations
will now have multisets Γ of stacks of commands (one stack per thread), and transitions will
have the shape 〈Γ, σ〉 →AM 〈Γ′, σ′〉. Configurations 〈∅, σ〉 can be abbreviated as σ. If we take a
formal-sum notation for multisets (where, for example, 2a+3b denotes the multiset {a, a, b, b, b}),
we could give (for example) the following axiom for skip:

〈(skip · γ) + Γ, σ〉 →AM 〈γ + Γ, σ〉

Solution: The rules are almost identical to the ones presented in class for IMP without threads,
but, as in the case for skip given above, have an additional +Γ component in the configurations.
The only interesting rule is the (new) rule for thread c end:

〈(thread c end · γ) + Γ, σ〉 →AM 〈c + γ + Γ, σ〉

(b) Use your semantics to execute the program thread X := 0 end;X := 1 starting from an arbitrary
initial state σ. Clearly identify the rules used in the derivation.
Solution: The execution can be presented schematically as:

〈thread X := 0 end;X := 1, σ〉
→AM 〈thread X := 0 end ·X := 1, σ〉
→AM 〈(X := 0) + (X := 1), σ〉

→AM 〈X := 1, σ[0/X]〉 →AM σ[1/X]
→AM 〈X := 0, σ[1/X]〉 →AM σ[0/X]

Notice the non-deterministic branching at the (third) configuration 〈(X := 0) + (X := 1), σ〉!

4. Consider the IMP program c:

while ¬(X = Y) do (X := X + 1;Y := Y − 1)

Use the big-step operational semantics of IMP to prove that the program terminates for all (initial)

states in S
def
= {σ ∈ Σ | ∃k ≥ 0. σ(Y) = σ(X) + 2k}.

Solution: Define ≺⊆ S × S as follows:

σ ≺ σ′
def⇔ σ(Y)− σ(X) < σ′(Y)− σ′(X)

Since σ(Y) − σ(X) ≥ 0 for all σ ∈ Σ, ≺ is well-founded. We use well-founded induction to prove
∀σ ∈ S. ∃σ′ ∈ Σ. ‖− 〈c, σ〉 → σ′.

Let σ ∈ S, and let ∃σ′ ∈ Σ. ‖− 〈c, σ′′〉 → σ′ hold for all σ′′ ∈ S such that σ′′ ≺ σ (induction hypothesis).

Case 1: σ(X) = σ(Y). It is straightforward to produce a direct derivation of 〈c, σ〉 → σ, with last rule
applied whileF , and hence ∃σ′ ∈ Σ. ‖− 〈c, σ〉 → σ′.

Case 2: σ(X) 6= σ(Y). Again, we construct a derivation of 〈c, σ〉 → σ′, with last rule applied whileT .
The sub-derivations of the first two premises 〈¬(X = Y), σ〉 → true and 〈X := X + 1;Y := Y − 1, σ〉 →

σ[σ(X)+ 1/X, σ(Y)− 1/Y] are easy to construct. The existence of a sub-derivation for the third sub-
goal 〈c, σ[σ(X) + 1/X, σ(Y)− 1/Y]〉 → σ′ is guaranteed (for some σ′!) by the induction hypothesis,
since σ[σ(X)+1/X, σ(Y)−1/Y] ∈ S and σ[σ(X)+1/X, σ(Y)−1/Y] ≺ σ whenever σ ∈ S. Therefore
∃σ′ ∈ Σ. ‖− 〈c, σ〉 → σ′.

5. Consider the following IMP program c:

while ¬(I ≤ 0) do

if C ≤ I then

I := I − C

else

I := I − 1

Prove termination of the program for all initial states in S
def
= {σ ∈ Σ | σ(C) ≥ 1} by showing that for

every state σ ∈ S there is a state σ′ ∈ Σ such that ‖− 〈c, σ〉 → σ′.
Hint: use well–founded induction on S.

6. Consider the big-step operational semantics of IMP.

(a) Show that ‖− 〈while b do c, σ〉 → σ′ implies ‖− 〈b, σ′〉 → false. You will need to use a special
kind of induction here, namely (mathematical) induction on the depth of the derivation trees for
transitions 〈while b do c, σ〉 → σ′. (That is, you assume that ‖− 〈b, σ′〉 → false holds whenever
a transition of the shape 〈while b do c, σ〉 → σ′ is derivable with a derivation tree of depth n,
and you prove that then this also holds for n + 1.)
Solution: In the base case n = 0 the result holds vacuously, since there are no derivations of
depth 0 (that is, axioms) for transitions of the shape 〈while b do c, σ〉 → σ′. For the induction
case, assume that for all σ, σ′ ∈ Σ, ‖− 〈b, σ′〉 → false holds whenever 〈while b do c, σ〉 → σ′ is
derivable with a derivation tree with depth n (induction hypothesis). Assume 〈while b do c, σ〉 →
σ′ is derivable with a derivation tree with depth n + 1. (We show that ‖− 〈b, σ′〉 → false.) We
consider the two possible cases for the last rule applied in the derivation of 〈while b do c, σ〉 → σ′.
Case 1: Last rule is whileF . Then ‖− 〈b, σ〉 → false and σ′ = σ, and hence ‖− 〈b, σ′〉 → false.
Case 2: Last rule is whileT . Then, for some σ′′, 〈while b do c, σ′′〉 → σ′ is derivable with a
derivation of depth n. By the induction hypothesis, ‖− 〈b, σ′〉 → false.

(b) Consider the transformation on IMP programs from program while b do (while b do c) to
program while b do c. Show that the transformation is a semantics-preserving optimization by
proving that the two programs are equivalent.
Solution: The proof is standard, by transforming every derivation of 〈while b do (while b do c), σ〉 →
σ′ to a derivation of 〈while b do c, σ〉 → σ′, and vice versa, by using (a).

2 Denotational Semantics of IMP

1. Consider the IMP program for computing powers:

P := 1;

while ¬(Y = 0) do

P := P ×X;

Y := Y − 1

Use the fixed–point characterization of the denotational semantics of while–loops of IMP and the
Fixed–Point Theorem to iteratively compute the denotation of the above program:

(a) Determine the transformer Γ for the while loop. Simplify it as much as possible.

(b) Use Γ to compute the first three (non–empty) approximants of the fixed–point computation.

(c) Guess the general shape of the i–th approximant.

(d) Use this to obtain the limit value (which is the denotation of the while loop).

(e) Compute the denotation of the whole program.

Solution:

(a) Let w stand for the while–loop in the program. Then C[[w]] = fix Γ, where Γ is defined by:
Γ(F) = {(σ, σ′) | B[[¬(Y = 0)]]σ = true ∧ (σ, σ′) ∈ F ◦ C[[P := P ×X;Y := Y − 1]]}

∪ {(σ, σ) | B[[¬(Y = 0)]]σ = false}
= {(σ, σ′) | σ(Y) 6= 0 ∧ (σ, σ′) ∈ F ◦ C[[P := P ×X;Y := Y − 1]]}
∪ {(σ, σ) | σ(Y) = 0}

We can calculate C[[P := P ×X;Y := Y − 1]] as follows:
C[[P := P ×X;Y := Y − 1]]
= C[[Y := Y − 1]] ◦ C[[P := P ×X]]
= {(σ, σ[n/Y]) | n = A[[Y − 1]] σ} ◦ {(σ, σ[n/P]) | n = A[[P ×X]] σ}
= {(σ, σ[σ(Y)− 1/Y])} ◦ {(σ, σ[σ(P)× σ(X)/P])}
= {(σ, σ[σ(Y)− 1/Y, σ(P)× σ(X)/P])}
So, we can finally present Γ simply as:
Γ(F) = F ◦ {(σ, σ[σ(Y)− 1/Y, σ(P)× σ(X)/P]) | σ(Y) 6= 0}

∪ {(σ, σ) | σ(Y) = 0}
(b) Then, the first three iterations in the fixed-point computation would give:

Γ0(∅) = ∅
Γ1(∅) = Γ(Γ0(∅)) = Γ(∅) =

= {(σ, σ) | σ(Y) = 0}
Γ2(∅) = Γ(Γ1(∅)) =

= {(σ, σ[0/Y, σ(P)× σ(X)/P]) | σ(Y) = 1}
∪ {(σ, σ) | σ(Y) = 0}

Γ3(∅) = Γ(Γ2(∅)) =
=

{
(σ, σ[0/Y, σ(P)× σ(X)2/P]) | σ(Y) = 2

}
∪ {(σ, σ[0/Y, σ(P)× σ(X)/P]) | σ(Y) = 1}
∪ {(σ, σ) | σ(Y) = 0}

(c) In the general case we have:

Γi(∅) =
{
(σ, σ[0/Y, σ(P)× σ(X)σ(Y)/P]) | 0 ≤ σ(Y) < i

}
(d) The fixed–point is the union/limit of all approximants:

C[[w]] = fix Γ =
{
(σ, σ[0/Y, σ(P)× σ(X)σ(Y)/P]) | σ(Y) ≥ 0

}
(e) Finally, for the denotational semantics of the whole program we obtain:

C[[p]] = C[[w]] ◦ C[[P := 1]] =
{
(σ, σ[0/Y, σ(X)σ(Y)/P]) | σ(Y) ≥ 0

}

2. Consider the following IMP program c for computing sum(n)
def
=

∑n
k=0 k .

Z := 0;

X := 1;

while X ≤ Y do

Z := Z + X;

X := X + 1

Use the fixed–point characterization of the denotational semantics of while–loops of IMP and the
Fixed–Point Theorem to iteratively compute the denotation of the above program. That is:

(a) Determine the transformer Γ for the while loop. Simplify it as much as possible.
Solution: After simplification, we obtain from the definition of Γb,c:

Γ(F) = {(σ, σ′) | σ(X) ≤ σ(Y) ∧ (σ[σ(Z) + σ(X)/Z, σ(X) + 1/X], σ′) ∈ F}
∪ {(σ, σ) | σ(X) > σ(Y)}

(b) Use Γ to compute the first three (non–empty) approximants of the fixed–point computation.

(c) Guess the general shape of the i–th approximant.
Solution: The i–th approximant can be presented as:
Γi(∅) = {(σ, σ[σ(Z) + sum(σ(X), σ(Y))/Z , σ(Y) + 1/X]) | 0 ≤ σ(Y)− σ(X) ≤ i − 2}

∪ {(σ, σ) | σ(X) > σ(Y)}
where we use sum(m,n) to denote

∑n
k=m k.

(d) Use this to obtain the limit value (which is the denotation of the while loop).
Solution: The limit of the fixed-point construction is:⋃

i∈ω Γi(∅) = {(σ, σ[σ(Z) + sum(σ(X), σ(Y))/Z , σ(Y) + 1/X]) | σ(X) ≤ σ(Y)}
∪ {(σ, σ) | σ(X) > σ(Y)}

(e) Compute the denotation of the whole program.
Solution: For the whole program, we obtain:
C[[c]] = {(σ, σ[sum(1 , σ(Y))/Z , σ(Y) + 1/X]) | σ(Y) ≥ 1}

∪ {(σ, σ[0/Z, 1/X]) | σ(Y) < 1}

3. Use the fixed–point characterization of the denotational semantics of while–loops of IMP and the
Fixed–Point Theorem to iteratively compute the denotation of the following IMP program Med for
computing the mean value of two numbers (noting that it only terminates if the numbers are both
even or both odd).

while ¬(X = Y) do

if X ≤ Y then X := X + 1;Y := Y − 1

else Y := Y + 1;X := X − 1

Show the first few iterations of the fixed–point computation, then guess the general value of the i–th
approximant, and finally the limit value.

3 Axiomatic Semantics of IMP

1. Consider the IMP program for computing powers:

P := 1;

while ¬(Y = 0) do

P := P ×X;

Y := Y − 1

(a) Specify this program in terms of a pre–condition and a post–condition.
Solution: An obvious specification, which turns out to be provable, is:

Pre ≡ X = m ∧ Y = n

Post ≡ P = mn

(b) Use the axiomatic semantics of IMP to verify that the program meets its specification. Present
the proof either as a derivation (that is, as a proof tree) or as a proof outline.
Solution: The main difficulty is to pick an appropriate loop invariant. One good choice is
P ×XY = mn, which obviously implies the post–condition when Y = 0. Here is a proof outline
for the above specification. The validity of the involved implications is obvious.

{X = m ∧ Y = n}
{1×XY = mn}
P := 1;
{P ×XY = mn}
while ¬(Y = 0) do

{P ×XY = mn ∧ ¬(Y = 0)}
{(P ×X)×XY −1 = mn}
P := P ×X;
{P ×XY −1 = mn}
Y := Y − 1
{P ×XY = mn}

{P ×XY = mn ∧ ¬¬(Y = 0)}
{P = mn}

2. Consider the following IMP program c for computing sum(n)
def
=

∑n
k=0 k .

Z := 0;

X := 1;

while X ≤ Y do

Z := Z + X;

X := X + 1

Use the axiomatic semantics of IMP to verify that the program meets the specification

{Y = n ∧ Y ≥ 0} c {Z = sum(n)}

(a) Present the proof (preferrably) as a proof tableau (that is, as a fully annotated program).
Solution: The annotation is standard once one has chosen a suitable loop invariant. One such
choice is X ≤ Y + 1 ∧ Y = n ∧ Z = sum(X − 1).

(b) Identify and justify the resulting proof obligations.
Solution: The standard annotation produces 3 proof obligations, which are easily discharged.
The main property needed here is sum(m) = sum(m − 1) + m.

3. Consider the IMP program c for computing factorials:

Y := 1;

while ¬(X = 1) do

Y := Y ×X;

X := X − 1

Use the axiomatic semantics of IMP (page 89) to verify that the program meets the specification
{X = m ∧ X ≥ 1}c{Y = m!}. Present the proof as a proof tableau (fully annotated program).
Enumerate and justify the resulting proof obligations.

Solution: The main difficulty is finding an appropriate loop invariant. A natural loop invariant for
the above program is the assertion X! × Y = m! ∧ X ≥ 1. Here is a proof tableau for the given
specification:

{X = m ∧X ≥ 1}
{X!× 1 = m! ∧X ≥ 1}
Y := 1;

{X!× Y = m! ∧X ≥ 1}
while ¬(X = 1) do

{X!× Y = m! ∧X ≥ 1 ∧ ¬(X = 1)}
{(X − 1)!× Y ×X = m! ∧X − 1 ≥ 1}
Y := Y ×X;

{(X − 1)!× Y = m! ∧X − 1 ≥ 1}
X := X − 1

{X!× Y = m! ∧X ≥ 1}
{X!× Y = m! ∧X ≥ 1 ∧ ¬¬(X = 1)}
{Y = m!}

The proof obligations resulting from this proof tableau are as follows:

(i) |= X = m ∧X ≥ 1 ⇒ X!× 1 = m! ∧X ≥ 1

(ii) |= X!× Y = m! ∧X ≥ 1 ∧ ¬(X = 1) ⇒ (X − 1)!× Y ×X = m! ∧X − 1 ≥ 1

(iii) |= X!× Y = m! ∧X ≥ 1 ∧ ¬¬(X = 1) ⇒ Y = m!

Their validity is obvious, apart maybe from (ii), the validity of which follows from the factorial property
a! = a× (a− 1)! which holds when a− 1 ≥ 1. This explains why we need the conjunct X ≥ 1 in the
loop invariant.

4. Recall the sequence of Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, . . . (add the last two to get the next). Let
Fib(i) denote the i-th member of the sequence. Consider the following IMP program c for computing
Fibonacci numbers:

X := 0;

Y := 1;

while 3 ≤ Z do

T := Y ;

Y := X + Y ;

X := T ;

Z := Z − 1

Use the axiomatic semantics of IMP (page 89) to verify the above program, which has been specified
as {Z ≥ 2 ∧ Z = n} c {Y = Fib(n)}. Present the proof as a proof tableau (fully annotated program).
Enumerate and justify the resulting proof obligations.

5. Consider the axiomatic semantics of IMP. Show that for all commands c ∈ Com and all assertions
A ∈ Assn,

‖− {A} c {true}

Solution: We use structural induction on commands c to show ∀c ∈ Com.∀A ∈ Assn. ‖−{A}c{true}.
Here we only show the most interesting case c ≡ while b do c′. Assume ∀A ∈ Assn. ‖− {A} c′ {true}
(induction hypothesis). Let A ∈ Assn. Consider the (incomplete) derivation:

√

|= A ⇒ true
{true ∧ b} c′ {true}

{true}while b do c′ {true ∧ ¬b}

√

|= true ∧ ¬b ⇒ true
{A}while b do c′ {true}

The two resulting proof obligations hold trivially, while the sub-goal {true ∧ b} c′ {true} is derivable
due to the induction hypothesis. Hence ∀A ∈ Assn. ‖− {A}while b do c′ {true}.

6. Consider the axiomatic semantics of IMP. Show that for all commands c ∈ Com:

‖− {true} c {true}

Hint: use structural induction on c.

4 More Execrcises on IMP

1. Consider the transformation on IMP programs, from a program c ≡ if b then c1; c2 else c1; c3 to
program c′ ≡ c1; if b then c2 else c3. Assume that execution of c1 does not affect the evaluation of b.

(a) Show that the transformation is a semantics preserving optimization, by proving c ∼ c′ for the
operational semantics of IMP (page 20).
Solution: We can formalize the assumption that c1 does not affect the evaluation of b as

‖− 〈c1, σ〉 → σ′ ⇒ (‖− 〈b, σ〉 → true ⇔‖−
〈
b, σ′

〉
→ true) (?)

for all σ, σ′. We have to show that

‖− 〈c, σ〉 → σ′ ⇔‖−
〈
c′, σ

〉
→ σ′

for all σ, σ′. We show direction (⇒) only; the other direction is similar.
Assume ‖− 〈c, σ〉 → σ′. Then, there must be a derivation of the shape:

(A)
〈b, σ〉 → true

(B)
〈c1, σ〉 → σ′′

(C)
〈c2, σ

′′〉 → σ′

〈c1; c2, σ〉 → σ′

〈if b then c1; c2 else c1; c3, σ〉 → σ′

for some state σ′′ and subderivations A, B and C, or alternatively, a derivation of the shape:

(D)
〈b, σ〉 → false

(E)
〈c1, σ〉 → σ′′′

(F)
〈c3, σ

′′′〉 → σ′

〈c1; c3, σ〉 → σ′

〈if b then c1; c2 else c1; c3, σ〉 → σ′

for some state σ′′′ and subderivations D, E and F . In the first case, we can use the subderivations
A, B, C and the assumption (?) to construct the derivation:

(B)
〈c1, σ〉 → σ′′

(A), (?)
〈b, σ′′〉 → true

(C)
〈c2, σ

′′〉 → σ′

〈if b then c2 else c3, σ
′′〉 → σ′

〈c1; if b then c2 else c3, σ〉 → σ′

showing ‖− 〈c′, σ〉 → σ′, and similarly for the second case.

(b) Give an alternative proof by showing C[[c]] = C[[c′]] in the denotational semantics of IMP (page
60).

2. Show that the transformation on IMP programs, from program

c1 ≡ X := 3; if 0 ≤ X then c else c′

to program

c2 ≡ X := 3; c

is semantically preserving, and thus an optimization. Give two alternative proofs based:

(a) on the big-step operational semantics of IMP (page 20), and

(b) on its denotational semantics.

3. Let us extend the simple imperative language IMP with a “repeat c until b” command, having the
intuitive meaning of repeatedly executing c and then testing b, and exiting the loop as soon as b is
true.

(a) Complete the operational semantics of the extended language by providing transition rules for
the new command. Prove the equivalence (repeat c until b) ∼ (c;while ¬b do c) under this
semantics. Hint: Induction on derivations is an option here.

(b) Complete the denotational semantics of the extended language by defining a suitable transfor-
mation on partial functions Γ′(ϕ) so that C[[repeat c until b]] can be defined as the least fixed
point of Γ′. Prove the equality C[[repeat c until b]] = C[[c;while ¬b do c]] under this semantics.
Hint: You probably have to use some form of fixed point induction here.

(c) Complete the axiomatic semantics of the extended language by providing a Hoare rule for the
new command. Give an intuitive justification for the rule.

5 Operational Semantics of REC

1. Consider the operational semantics of call–by–value evaluation of closed terms written in REC.

(a) Evaluate the closed term pow(2, 1) under the declaration:

pow(x, y) = if y then 1 else (x× pow(x, y − 1)).

(b) Suggest a small–step operational semantics for REC by giving a set of rules for deriving one–

step transitions of the shape t
1−→

d

va t′, enforcing a left–to–right call–by–value evaluation strategy.
Assume that all function variables are of arity 2.
Hint: numbers should be treated as final terms in such a semantics, and should therefore not be
evaluated further.
Solution: We have no rules for t ≡ n since numbers are final values and are not evaluated
further, and no rules for t ≡ x since we are are considering closed terms only. A good choice of
rules capturing the idea of single–step computation could be:

Op1
t1

1−→
d

va t′1

t1 op t2
1−→

d

va t′1 op t2
Op2

t2
1−→

d

va t′2

n op t2
1−→

d

va n op t′2

Op3
·

n1 op n2
1−→

d

va n1 op n2

If1
t0

1−→
d

va t′0

if t0 then t1 else t2
1−→

d

va if t′0 then t1 else t2

If2
·

if 0 then t1 else t2
1−→

d

va t1
If3

n 6≡ 0

if n then t1 else t2
1−→

d

va t2

Fun1
t1

1−→
d

va t′1

fi(t1, t2)
1−→

d

va fi(t′1, t2)
Fun2

t2
1−→

d

va t′2

fi(n, t2)
1−→

d

va fi(n, t′2)

Fun3
·

fi(n1, n2)
1−→

d

va di[n1/x1, n2/x2]

(c) Evaluate the closed term pow(2, 1) under your small-step semantics, and show the term sequence

t
1−→

d

va t′
1−→

d

va t′′
1−→

d

va . . .
1−→

d

va n of the evaluation.

(d) Let t
∗−→

d

va n denote the fact that there is a term sequence t
1−→

d

va t′
1−→

d

va t′′
1−→

d

va . . .
1−→

d

va n
of zero or more one–step transitions (that is, that t evaluates to n in the reflexive transitive

closure of your small–step semantics, as in the example above). Then t
∗−→

d

va n is derivable if all

transitions t
1−→

d

va t′, t′
1−→

d

va t′′, . . . , are derivable. Prove that for every t and n, if t →d
va n is

derivable in the large–step semantics, then t
∗−→

d

va n is derivable in your small–step semantics.
Hint: you could use induction on derivations.
Solution: While induction on derivations might be easier to understand here, it is rule induction
which yields the shortest proof, and this is the technique which we shall illustrate.

Let’s denote by P (t, n) the property that t
∗−→

d

va n is derivable in the small–step semantics.
Then, what we need to prove is that P (t, n) holds of all derivable tuples t →d

va n in the large–step
semantics. The principle of rule induction allows us to make this inference if we can prove that
all tuples t →d

va n which are axioms in the large–step semantics satisfy P (t, n), and that all other
rules preserve P (t, n), that is, if the assumption tuples satisfy P (t, n) then also the conclusion
tuple does so. So, we proceed by investigating each large–step rule separately.

(num) This rule is an axiom, so we have to show that n
∗−→

d

va n is derivable in the small–step

semantics. But this follows immediately from reflexivity of ∗−→
d

va.

(op) This rule has two premises, so we assume derivability of t1
∗−→

d

va n1 and t2
∗−→

d

va n2, and we

have to show derivability of t1 op t2
∗−→

d

va n1 op n2. Derivability of t1
∗−→

d

va n1 gives us, by

means of rule Op1, derivability of t1 op t2
∗−→

d

va n1 op t2. On the other hand, derivability

of t2
∗−→

d

va n2 gives us, by means of rule Op2, derivability of n1 op t2
∗−→

d

va n1 op n2. And

finally, axiom rule Op3 gives derivability of n1 op n2
1−→

d

va n1 op n2. Transitivity of ∗−→
d

va

allows us to combine these there results to infer derivability of t1 op t2
∗−→

d

va n1 op n2.

(condt) Assume t0
∗−→

d

va 0 and t1
∗−→

d

va n1 are derivable. The first assumption gives us, by means of

rule If1, derivability of if t0 then t1 else t2
∗−→

d

va if 0 then t1 else t2. Next, rule If2 guaran-

tees derivability of if 0 then t1 else t2
1−→

d

va t1. Derivability of if t0 then t1 else t2
1−→

d

va n1

follows then by transitivity of ∗−→
d

va from these two results and from the second assumption.
(condf) Similar to the previous case.

(fn) Very similar to case (op) when all function variables are of arity 2.

This concludes the proof.

2. Consider the following program for computing the mean value of two numbers:

med(x, y) = if x− y then x else med(x + 1, y − 1)

Evaluation of closed terms med(m,n) terminates for all m,n ∈ N such that m ≤ n and n−m is even,
both in call–by–value and call–by–name order of execution.

(a) Formalize these termination statements by referring to the (big–step) operational semantics
of REC.

(b) Prove the statements by using well–founded induction.

6 Denotational Semantics of REC

1. Use the denotational semantics of REC for call–by–value (pages 144–147), and the Fixed–Point The-
orem (page 121) to iteratively compute the denotation of the following declaration.

pos(x) = if x then 0 else dec(x, 0− x)

dec(x, y) = if x then 0 else (if y then 1 else dec(x− 1, y − 1))

Show the first few iterations of the fixed–point computation, the general i-th approximant, and the
fixed point. Then evaluate the term pos(3).

