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This lecture was about constructing an efficient data structures and algorithms
for string matching. Data structures such as Knuth-Morris-Pratt (KMP) automa-
ton for matching of a pattern in a given string were discussed. Other data structures
such as a prefix-tree (a trie), suffix trees and suffix arrays were demonstrated as
well.

1 String Matching

We often want to search a text for all occurrences of a specific pattern. Let us say
we want find all occurrences of the pattern abab in the text string abababccabab.
As you can see the pattern occurs at several positions in the text string. It occurs
at positions 1-4, but also at positions 2-6 and positions 9-12 at the end. Finding
the starting positions (1, 2 and 9) of the pattern abab in the string abababccabab
is what is often referred to as the string matching problem. In this section we
will discuss several algorithm with different running times for solving the string
matching problem.

For the rest of this section let us assume that the pattern P is a string of m
characters, (p1, . . . , pm), and that the text T is a string of n characters, (t1, . . . , tn)
(where m ≤ n).

1.1 Naive string-matching

The naive algorithm for string matching simply checks if we can find the pattern
P starting at character 1 to n −m in T . The outer loop on line 1 in Algorithm 1
is run for each of the n−m + 1 possible starting positions of the pattern, and for
each of those the inner loop on line 2 is run (at most) m times. The total running
time would therefore be O((n−m + 1)m).

Algorithm 1: Naive string-matching.
Input: Pattern P = (p1, . . . , pm) and text T = (t1, . . . , tn).
Output: Positions in T where P start.
NaiveMatching(T , P )
(1) for j ← 1 to n−m
(2) for i← 1 to m
(3) if pi 6= ti+j−1 then break
(4) if i ≥ m then output(j)
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1.2 String matching with finite automata

A problem with the naive algorithm for string-matching is that we may examine
each character in the text string several times. Here we will show a way, using
automata, in which we examine each character exactly once. The matching time
will therefore be O(n). This however requires us to first build a automata which
could take a lot of time if we have a large alphabet.

A finite automaton (or a finite state machine) consists of a finite number of
states, a finite number of transitions between the states, a start state and a subset
of states known as accepting states.

?>=<89:;0 a ?>=<89:;1// b ?>=<89:;2// a ?>=<89:;3// b ?>=<89:;4// a ?>=<89:;5// c ?>=<89:;6// a ?>=<89:;765401237//

Figure 1: An automaton with states 0, 1, . . . , 7 and with transitions labelled
a, b and c. Its start state is state 0 and its only accepting state is 7.

A finite automaton can be viewed as deciding whether or not a input string is
accepted or not by the automaton. Starting in its start state the automaton reads
one character at a time from an input string and follows the transitions labelled
with the current character. This is repeated until we reach the end of the string. If
we end up in a accepting state the string is said to be accepted by the automaton,
otherwise it is said to be rejected.

If we want to use automata for string matching we will need to build one string-
matching automaton for each pattern. This has to be done as a preprocessing step
before we can search the text string. When we are using automata for matching
strings we often want the alphabet to contain all the English letters from a to
z. For the automaton to be deterministic we would have to add a transitions for
every letter for each state. Doing this would however make the presentation very
cumbersome. Instead we will assume that if we encounter a character in the text
string that is not in the pattern we have an implicit transition to the start state.

Let us say we want to try and match the string abacxyzababaca with the pattern
ababaca using the automaton in Figure 1. We would then start in state 0 and when
we read the first character, a, we would move to state 1. Reading the next character
from the input, b, we would move to state 2, and so on. When we reach state 3
we read c from the input and since there is no transition labelled c from state 3
we move implicitly to state 0 and start from the beginning. Since there are no
transitions from state 0 for x, y or z we stay there until we read a from the input.
The next 7 transitions will take us to the accepting state 7 and we have found a
match.

But what if we want to match the string abababaca against the same automaton?
It clearly matches the pattern at position 3. Reading ababa from the input we would
move to state 5. There is however no transition from state 5 labelled b. If we go
back to state 0 and start over from were we are in the input we will miss the match
at position 3. However, because we have read at least aba (the last three characters)
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and we got a b this could be a new beginning of a match and we can instead go to
state 4 and continue matching from there. If we in a similar way have a look at
what could happen in the other states we get the automaton in Figure 2.
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Figure 2: An automaton for the pattern ababaca.

As you can see we will have a transition for every character of the alphabet for
each state, in this case a, b and c. When the alphabet is large (for example if we
are using Unicode strings) and we have a non trivial pattern we would get a dense
graph with many edges. In fact, worst case would be Ω(n2) edges in total.

1.3 The Knuth-Morris-Pratt algorithm
The problem with the naive way of constructing a finite automaton for string match-
ing was we could get a automaton with a lot of edges. The Knuth-Morris-Pratt
algorithm is also based on finite automata, meaning it will also match a string in
O(n), and it will need only an auxiliary array that can be precomputed in time
O(m).

If we look at Figure 2 we can make an important observation. All transitions
going in to a state (except for state 0) is labelled with the same character. This is
no coincidence because when we go “backwards” in the pattern (when we follow a
transition to a earlier state) we pretend as if we reached the state by reading the
“forward” character so the characters going in to a state should be the same (state
0 is special since we stay in 0 until we find the first character of the pattern and we
return to 0 when we read something that can not be part of the pattern).

Since the previously read character is always the same when entering a state
we can instead see it as if we read from the input only when going “forward”. The
“backward”-transitions then have to go to a state from which there is a “forward”-
transition labelled with the character we chose not consume from the input. A
transition not consuming input is usually called a ε-transition as ε usually stands
for the empty string. A ε-transition can be thought of as there being the option
not to consume a character of the input.

If we look at for example state 5 in the automaton without ε-transitions there
is a transition to state 4 on b and transition to state 1 on a. We could replace the
transition from state 5 to state 4 on b with a ε-transition from state 5 to state 3 since
the only way to go forward from state 3 is by reading b. This leaves us with having
to replace the other transition from state 5. Looking at state 3 we see that we can
replace the transition to state 1 on a in the same way. These two changes would
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leave us with a ε-transition from state 5 to state 3 and a ε-transition from state 3
to state 1. Since the ε-transitions won’t consume input we can follow as many as
we like backwards. This means that we can “chain” them together and replace the
transition from state 5 on a with the two previously mentioned ε-transitions.

Replacing all the “backward”-transitions with chained ε-transitions we can re-
duce the number of transitions in the automaton to only one forward and one
backward transition for every state except state 0. Doing so for the automaton in
Figure 2 we get the automaton in Figure 3.
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Figure 3: An automaton with ε-transitions for the pattern ababaca.

One can prove that this automaton we just described is in fact correct and can
be built but we will not do so here.

Having only one “backward”-transition for each state means that we can store
the automaton in a linked list. However, doing so we have to follow the links of the
list (the ε-transitions) backwards to find which state to go to. One can prove that
the amortized cost for doing this is going to stay the same as if we had a direct
link. We won’t prove that but the idea is to observe that we can not go further
back than we can go forward.

Let us call this list π and let π[i] be the end node for a ε-transition from state i.
If π[i] = j then (p1, . . . , pj) will be the longest prefix of (p1, . . . , pi−1) such that it
is also a postfix of (p1, . . . , pi). If we fail to match the pattern we would like to find
an as long as possible matching of what we have already read. We want the longest
possible prefix which would match. This is exactly what we are doing with the
ε-transitions. If we can’t find a match we move backwards following ε-transitions
until we find a match. Now we can make the following observation:

• If (p1, . . . , pj) is the longest prefix of (p1, . . . , pi−1) such that it is also a
postfix of (p1, . . . , pi) and

• (p1, . . . , pl) is the longest prefix of (p1, . . . , pj−1) such that it is also a postfix
of (p1, . . . , pj), then

• (p1, . . . , pl) is the second longest prefix of (p1, . . . , pi−1) such that it is also a
postfix of (p1, . . . , pi).

The intuition behind building π is that we want to build an as long a prefix
as possible to (p1, . . . , pi−2) such that it is also a postfix of (p1, . . . , pi−1). We can
define π recursively as:
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• π[1] = 0

• π[i], i > 1 is defined as:

1. Set k = i− 1

2. Set k = π[k]

3. If pi = pk+1, set π[i] = k + 1
if k = 0, set π[i] = 0
otherwise go to step 2.

This recursion is easily translated into to the pseudo code of Algorithm 2.

Algorithm 2: Compute Knuth-Morris-Pratt prefixtable.
Input: Pattern P = (p1, . . . , pm).
Output: Table π such that
π[i] = max{k|k < i, (p1, . . . , pk) is a postfix of (p1, . . . , pi)}.
PreKMP(P )
(1) π[1]← 0
(2) for i← 2 to m
(3) k ← π[i− 1]
(4) while k > 0 and pk+1 6= pi

(5) k ← π[k]
(6) if pk+1 = pi

(7) π[i]← k + 1
(8) else
(9) π[i]← 0

Algorithm 3: Knuth-Morris-Pratt string matching algorithm.
Input: Pattern P = (p1, . . . , pm) and text T = (t1, . . . , tn).
Output: Positions in T where P start.
KMP(T , P )
(1) π ← prekmp(P )
(2) j ← 0
(3) for i← 1 to n
(4) while j > 0 and pj+1 6= ti
(5) j ← π[j]
(6) if pk+1 = ti then π[i]← k + 1
(7) if j = m
(8) output(i−m + 1)
(9) j ← π[j]

Once we have built the automaton using Algorithm 2 the matching of a text
string is going to be easy. The pseudo-code for doing the matching is available
in Algorithm 3. We scan the n characters of the text from left to right with the
loop on line 3. The while-loop on line 4-5 amounts to following the ε-transitions
backwards as long as we can’t find a match for the current input character or until
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we reach state 0. At line 6 we check if we have read a character matching some part
of the pattern and in that case move forward in the pattern. At line 7 we check
if we matched the whole pattern and if so we output the starting position of the
match in the text string T . At line 9 we again try to find an as long a prefix of the
pattern that we can match with a postfix of our text string.

It necessary to follow the ε-transitions backwards even when we found a match
because the next match could start in the part we just matched. For example, say
we want to match the text cacacacaca against the pattern caca. The first match
would start at position 1 and end at position 4 in the text. The second match
however would start at position 2 so we still have to find the longest prefix of the
pattern that match the characters we have read.

2 Prefix trees (tries)
A prefix tree or trie (the name originates from retrieval) is basically a tree of nodes
where the root is a collection of pointers to other nodes. Each non-root node
represent a state (like in a KMP-automaton) and each transition from one node to
another is a character, where a leaf node is an accepting state.
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Figure 4: A trie. Each leaf node represents an accepting state (like in KMP
automaton). Even non-leaf nodes can be accepting nodes.

This structure is useful for creating so called associative arrays (dictionaries)
which contain a set of strings (keywords) for fast searching. Unlike a binary search
tree where each node contains a string and up to two nodes, a trie-node is a node
with at most as many child nodes as there are letters in the alphabet. To find a
keyword in a trie, you start at the root and traverse the tree character by character
until you reach a leaf node which contains the keyword.

Insertion of keywords into a trie (building a trie) works as follows:

1. Start with an empty tree, with just a root and no transitions (no pointers)

2. For the first keyword, w1, you create nodes for every character and link them
together from the root. In this tree, the last node (leaf node) is marked as
“accepting” node which means that result is found.

3. For the second keyword w2, you follow the transitions (pointers) from the
root by nodes while they match existing characters in w2 until you come to
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Figure 5: Keywords P = {problem, program, solve} in a trie representa-
tion.

a node that doesn’t have a transition that matches the character in w2. At
that point you create a transition and a node in the same way you did for
w1.

4. And so on for every keyword until the trie is complete.

Algorithm 4: Build trie.
Description: Inserting a keyword into a trie. g(q, c) is a transition function
between node q, and character c.
Input: An array W = {W1, . . . ,Wn} of strings, each of length Li, i =
1, . . . , n
Output: A trie.
BuildTrie(W)
(1) T← ∅
(2) for p← 1 to n
(3) q ← root
(4) for j ← 1 to Lp

(5) if g(q, Wp[j]) = null then insert(q, Wp[j])
(6) q ← g(q, Wp[j])
(7) T← T ∪ q

2.1 Trie as a state machine (automaton) for multiple pattern
matching

While a KMP-automaton is a good way to reduce time complexity of string match-
ing from O(n2) to O(n) for a single pattern matching, what if you have several
patterns P = {P1, . . . , Pm} to match in a text string S? A naive solution would
be to do a matching (using a KMP-automaton maybe) of every pattern P1, . . . , Pm

which would require O(nm) time where n is text length.
There is a clever way to do this. Consider a state machine like a KMP-

automaton but using a tree instead of an array of characters and a jump table.
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To find all occurrences of a set of patterns P in a string S you just traverse the trie
T by characters in S, once you reach a leaf node, you’ve got a result. Once you fail
to match a character in S to a node transition in T you follow the failure-links (or
failure-functions) that each node has (even the root node – to itself and leaf nodes
– in case there are more occurrences of a pattern to which the current suffix is a
prefix). The tricky part here is to set-up the failure function for each node.

1. Set failure pointer of every root-descent node back to root.

2. Use BFS to traverse each node and set their respective failure link to point
to a predecessor node in similar way to KMP-automaton.

To search for a match of any keyword in P in a text string S use Algorithm 5.

Algorithm 5: Aho-Corasick algorithm.
Description: Searching for all occurrences of all patterns P ∈ P .
Input: A string S. Note: the patterns to be searched for are already added
to the tree.
Output: A set R = {{r1, r2, . . . , rL1}, . . . , {r1, r2, . . . , rLm}} of result arrays
for every pattern P ∈ P.
AhoCorasick(S)
(1) p← root
(2) for i← 1 to Length(S)
(3) trans← null
(4) while trans = null
(5) trans← g(p, S[i])
(6) if p = root then break
(7) if trans = null then p ← Failure(p)
(8) if trans 6= null then p← trans
(9) foreach r ∈ Results(p)
(10) RIndexOf(r) ← RIndexOf(r) ∪ i
(11) return R

For Algorithm 5 we have:

1. Let R be the set of sets of matches of any P ∈ P. for example Ri contains
the set of indexes for all matches of Pi.

2. Let trans be a transition from a node to another.

3. Let g(q, c) be a transition function from node q to character c.

4. Let Failure(q) be the failure function, a pointer from q that points to a
node to go to in case of mismatch

5. Let Results(q) be a set of results – the strings that make a complete match.
Each leaf node and non-leaf nodes that represent an accepting stare have a
results set.

This Algorithm is known as Aho-Corasick multiple pattern matching algorithm
and was created by Alfred V. Aho and Margaret J. Corasick.



String matching 9

3 Suffix trees

In its simplest form a suffix tree is simply a trie of the n suffixes of a given string
of length n. We could therefore insert all the suffixes of the string in a trie to get a
suffix tree. This would require O(n2) time as we would be inserting n strings each
taking O(n) time. The problem with creating a suffix tree this way is that it would
require O(n2) space. In Figure 6 we can see the trie containing the suffixes of the
string bananas.
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Figure 6: A trie containing the suffixes of the string bananas.

Looking at the trie in Figure 6 we can see that only leafs are end nodes. We
can therefore reduce the space needed by compressing paths in which every node
has only one child. If we do this for the trie in Figure 6 we get the tree in Figure 7.
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Figure 7: A tree containing the suffixes of the string bananas with com-
pressed nodes.

Suffix trees have many uses. For example we can use a suffix tree of a string S
of length n to find all occurrences of a string P as a substring S. This can be done
in time O(m) if S has length m. Other applications include finding the longest
common substring between two strings.

There is a faster algorithm that constructs a suffix tree in O(n) time and space
but we won’t describe it here.
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4 Suffix Arrays

Suffix trees are useful for many things but they can be a little bit tricky to build
efficiently in time and space. A naive algorithm to build a suffix tree takes O(n2)
both time and space. Even if there are algorithms to build suffix trees in linear
time, they are difficult to implement. An alternative way to create a suffix container
data-structure is to use a suffix array. Suffix array is simply an array of all suffixes
of a string in an alphabetically sorted order. In Figure 8 we have the suffixes of the
string paper and it’s suffixes sorted.

p a p e r
a p e r
p e r
e r
r

a p e r
e r
p a p e r
p e r
r

Figure 8: The suffixes of the string paper on left and the suffixes sorted on
the right.

To sort such an array makes it possible to do a binary search for a given suffix
and find its position in S. In this manner suffix arrays can be used to quickly locate
a substring in a string. Finding occurrence of a pattern P in S equals finding a
suffix that begins with P . We can also retrieve ith largest suffix of the string by
it’s index in O(1) time.

Main advantages of a suffix array over a suffix tree is that it’s more efficient
in terms of space utilization. All we need to create an object for suffix array
representation is indexes in the string of all suffixes in sorted order. However
sorting such an array using conventional sorting algorithms requires O(n2 log n)
time, where n = Length(S) (since comparison of every character must be made,
but there is a clever way to reduce the cost for each comparison. After sorting by
the first letter (and ignoring the rest) we have already made all the comparisons of
every character in S.

p |a| p e r
|a| |p| e r
|p| |e| r
|e| |r|
|r|

Figure 9: We can observe that the second column contain the same elements
as the first except for one element.

This can be used to avoid redundant comparisons. Like this:

1. Sort by the first 2k characters in each suffix, k = 1, . . . , log n, and ignore the
rest.
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2. When we sort by the first 2k characters:
The first 2k−1 characters already sorted
The next 2k−1 characters are already compared in other suffixes

This reduces time complexity for constructing a suffix array to O(n(log n)2).
There are more sophisticated ways to further reduce the complexity, but they are
beyond the scope of this lecture.

|p| a p e r
|a| p e r
|p| e r
|e| r
|r|

a |p| e r
e |r|
p |e| r
p |a| p e r
r

a p e r
e r
p a p e r
p e r
r

Figure 10: The left figure show the original suffixes before sorting the first
column. The middle figure show the result of sorting on the first column.
When we want to sort on the second column we ignore the first column and
can use the fact that we have already sorted the suffixes per, r, er and aper
in the first round. We can now use the relative order of these prefixes when
sorting the second column. The last figure show the sorted suffix array.


