
DD2458, Problem Solving and Programming Under Pressure

Lecture 2: Debugging

Date: 2009-09-16
Scribe(s): Milan Ivanovic, Johannes Svensson och Pontus Walter
Lecturer: Alexander Baltatzis

Contents

1 Test your code 2

1.1 What should you test for? . 2

2 Errors 2

2.1 Compile errors . 2

2.2 Execution errors . 3

2.3 Logical errors . 3

3 Tracing output 3

4 IDEs and debuggers 4

4.1 Requirements for a good editor . 4

4.2 Pro�ling tools . 5

5 Contract Programming 5

6 General tips if you get stuck 6

1

2 DD2458 � Popup HT 2009

1 Test your code

There are several ways to test your code but in the beginning you probably start
with a table mostly called a test-matrix.

Conditions Expected Result Actual Result

It is very important to document your test cases otherwise they are useless. If
not one day your early-made test cases fails and you will spend a lot of time �nding
the problem again instead of �xing it.

1.1 What should you test for?

There are several things to test for but it depends a lot of what you want your code
to do. Here are some general test cases that could make a di�erence.

• Boundary conditions and limits

� min value, max value, min value - 1, min value + 1

� Beginning and end in loops

• Small input: −1, 0, 1, empty string � �

• Big input: for 32-bit integers check 231 − 1

• combinations of extreme values

• unexpected input ex. all input the same

• random input, mainly if you want to see if your program is robust enought
to handle even wrong input.

Example of test case:

• test quicksort with a sorted array and a stupid choosen pivot-element

Test cases could be a part of a contract and in that case it is of most importance
to have something like a "known limitations".

When you test your code do not do it interactivly, you will probably end up
making di�erent input and then making your code to do di�erent tests even if your
intention was to test the same problem. Have your test cases in a �le and have a
correct solution in another �le. To test your code you only write:

./program < program.in > program.out

diff program.out program.ans

2 Errors

2.1 Compile errors

Those are the errors we want to have. If we get them we can �x them before any
user gets in contact with the program. Because we like these errors we want as
many as we can get. With gcc use the �ag -Wall, this �ags means Warning All to
show all warnings. There are other �ags for speci�c warnings which could also be

Debugging 3

used and it could be good because you do not want to show all warnings if you are
not eventually going to �x them, in that case a lot of warnings could mean that
important warnings are ignored as well.

If you sometimes use deprecated functions and get a lot of warnings about it
you can use the -Wall �ag combined with the -Wno-deprecated.

2.2 Execution errors

When you get an execution error this is often accompanied by something describing
the problem, such as the text "Segmentation fault", a complete stack trace or a
stack backtrace. If you have compiled the binary with debugging enabled you might
get some additional information such as where in the application something went
wrong.

There are di�ereces between binaries compiled with debug �ags (-g for gcc)
and binaries compiled without. One di�erence is that debug binaries have padding
in the memory. [allocated][p][allocated], where p is padding. This can result
in some hard to �nd errors where you get a segfault with the non debug binary and
when you are trying to �nd where the segfault occurs, you get no segfault at all
with the binary compiled with the debug �ag because of the padding. Check the
boundaries of your arrays and similar data structures. Add asserts for the input in
functions and print tracing output to try to �nd where the segfault occurs.

2.3 Logical errors

Use a debugger - see the part about debuggers.
Use tracing output - see the part about tracing output.

3 Tracing output

If you have an advanced algorithm with several steps, it might be useful to print
out some information in every step of the algorithm. This enables you to see which
parts of the algorithm that do what you want them to do and where it starts to
fail.

Another good advice is to make sure that the input to the application is being
parsed correctly and has been inserted into your arrays or other data structures in
the way you want it to. Do this by printing out the parsed input just after it has
been read. When you know that your reading and parsing of the program input is
correct, it will be much more easier to debug the rest of the application.

Print the information that is interesting for you, this can often be described
with:

where: variable = value, variable = value, ...

Example:

foo(): x = 3, y = 4, z = 4294967295

4 DD2458 � Popup HT 2009

4 IDEs and debuggers

There are many IDEs (Integrated development environment) that are available to
users depending on what operating system is used. Some are better than others,
depending on the language and desired functionality.

The most commonly used IDEs are :

• Microsoft Visual Studio - Visual Studio is a very good IDE and is a must
have if one is developing on windows operating systems. The functionality is
large and has all the little options and settings one may need. The debugger
is probably the best of all other IDEs which makes debugging much easier as
accessing and watching variables is simple and fast.

• Eclipse - A good IDE, which is best used when programming in Java. One
can extend its function to C/C++ by using plugins. Debugging in C/C++
may be somewhat di�cult depending on the size of the program, as Eclipse
is written in Java and memory usage will rise upon debugging large chunks of
code making it slowly crawl once one starts going through each line of code.

• Xcode - Only used on mac operating systems. Fairly simple and very easy
to use which leaves the user to want a lot more options available especially
when one is using the Xcode debugger.

• Netbeans - A very good IDE if one is programming in Java, if not the best
Java based IDE. C/C++ support on the other hand is not as good as its
Java counterpart. Debugger is also lacking in options and settings compared
to Visual Studio.

• Code Blocks - C/C++ IDE only. Compiles and runs large chunks of code
very fast and has a reliable debugger. Downside is that it is not updated
regularly and one is forced to search for "`nightly"' builds (beta builds) in
order to get access to the latest changes.

There are also some powerful text editors that one may use instead of an IDE,
like XEmacs or Vim and combine it with command-line debuggers like GDB (GNU
Project debugger) in order to be able to debug the written code. One can also ex-
pand it with graphical front-end for GDB by using DDD(Data Display Debugger)
in order to get a more graphical presentation.

4.1 Requirements for a good editor

An editor needs to ful�ll some basic requirements for it to be useful when coding.
Requirements vary from person to person but the most commonly wanted ones are:

• Syntax highlighting - A must have when programing for longer periods of
time. Makes it easier to recognize di�erent categories and terms while writing
code by using di�erent colors for di�erent elements.

• Auto-completion - Very useful when one wants to call functions of an object
but can't remember the full name, or wants a list of all possible function calls
that are available for the given object instead of digging through documen-
tation.

Debugging 5

• Indenting - A must have feature. Makes the code readable and helps with
the code overview when having a lot of text on screen.

• Refactoring - Default �nd and replace options are no replacement for good
refactoring support, when one wants to rename functions, variables, classes
etc.

• Code folding - Helps the people which don't split the code into several other
�les, but instead have one �le with a lot of code in it. Hiding the extra code
is often helpful but still can't be compared to splitting the code into several
other �les.

4.2 Pro�ling tools

Once one has a code that is producing the desired output, the next problem is most
often the speed at which the program is running and that there are no memory leaks.
Depending on the code and algorithms used one can try to speed up the program
by optimizing it. In order to do that one needs to know where the bottlenecks are
and that can be done by using pro�ling tools. Pro�lers simply observe the program
while it is running and are able to give you the information that is necessary for
further improvements. Statistics like how many times a certain function is called
and how long does it take compared to the rest of the program is very important,
especially in decisions where one needs to combine several algorithms and choose
the fastest one for the problem at hand.

Common pro�ling tools :

• Visual Studio pro�ler(C/C++) - Team Edition of the Visual Studio 2008
has a built in pro�ler that is very easy to use in order to collect the needed
information about the speed bottlenecks in the program. It gives detailed
information about functions used, how long they ran and which code blocks
were called the most.

• AMD CodeAnalyst Performance Analyzer (C/C++) - Can be integrated with
Visual Studio if one doesn't have the team edition. Very simple pro�ler
that is able to represent almost the same information as the Visual Studio's
counterpart.

• Gprof - GNU pro�ler that is used to determine which parts of a program are
taking most of the execution time.

• Gcov - Is a tool that one can use in conjunction with GCC to test code
coverage in the program.

• Valgrind - A pro�ler that has exceptional memory debugging and memory
leak detection.

• Netbeans pro�ler (Java) - Netbeans pro�ler works only with Java and does
not have support for pro�ling C/C++ code.

5 Contract Programming

Another way to make working code is using asserts. This uses conditions and if the
program cannot satisfy a condition it exits. In this way you know that in all the

6 DD2458 � Popup HT 2009

states where you use assert you know that your code is running correctly. Of course
it is of most importance that you think what conditions your program is depended
of and to make good and relevant conditions.

Assertions in C/C++ code1:

#include <cassert>

..

assert(condition);

Example:

assert(i <= 10);

In java it is possible to give an error message that will displayed with the
stacktrace. 2 :

assert condition : "string that will be printed if fail, other

output or a function that returns some value.";

Example:

assert interval > 0 && intercal <= 1000 : interval;

6 General tips if you get stuck

If you get stuck there are a couple of things you can do to maximize your e�ciency
and solve the problem. One of the key thing is to "disconnect" and "reconnect"
to clear your mind and empty your cache. This enables you to easier �nd another
angle for attacking the problem or see why your current code doesn't work.
For example:

• You can take a short break.

• You can work on another problem.

• Tell someone else about the problem. Describe it in as much detail as possible
and how you are trying to solve the problem. While doing this you might
�nd yourself suddenly realizing what's wrong with your code. This approach
forces your mind to go through the details of the problem and all the steps
in your solution.

• Sleep on it.

• Rewrite your code. This approach also forces you to go through the steps of
solving the problem and earlier mistakes are sometimes discovered.

• Refactor the code so that it is readable and nicely indented. Commenting
on your code might also help since it also forces you to go through what you
want the code to do.

1http://www.cppreference.com/wiki/c/other/assert
2http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html

