
DD2458, Problem Solving and Programming Under Pressure

Lecture 5: Graphs
Date: 2009-09-30
Scribe(s): Simon Ragnar, Per Eriksson and Chen Xing
Lecturer: Fredrik NiemelÃď

This lecture goes through some algorithms to solve different graph related problems.

1 Graphs

1.1 Definitions
A graph is an ordered pair G = (V, E), where V is a set of vertices or nodes
and E is a set of edges. The edge set E consist of ordered pairs of vertices in a
directed graph or digraph, and unordered pairs of vertices in an undirected
graph.

Vertices are commonly denoted as {v1, v2, . . . , vn} ∈ V , and edges as (vi, vj) ∈
E, if there is an edge from vertex vi to vj . It is common for edges to hold additional
information such as its capacity, weight or distance.

The degree of a vertex is the number of edges incident on the vertex. Directed
graphs usually differ between in-degree and out-degree; the number of edges
incident to or entering the vertex, and the number of edges incident from or
leaving the vertex. A vertex with degree 0 is called an isolated vertex.

Graphs with vertices having high degrees are considered to be dense while
graphs with low degrees are sparse.

A path of length k in a graph is a sequence (u0, u1, . . . , uk) ∈ V such that
(uj−1, uj) ∈ E for all j = 1, 2, . . . , k. Usually only non-zero length paths are
considered.

A cycle in a directed graph is a path where u0 = uk. A self-loop is a single-
edge cycle. A cycle in an undirected graph is usually a path where u0 = uk and
where each edge in the path is distinct.

Graphs without cycles are called acyclic graphs or trees.

1.2 Representations
When representing a graph in a computer, the two most common structures used
are the adjacency matrix and the adjacency list. It is also not unheard of
representing a graph its (then usually sorted) list of edges.

Other representations do exist but are generally only used for a particular al-
gorithm in mind.

1.2.1 Adjacency Matrix

An adjacency matrix represents a graph by a |V| * |V| matrix where element mij

equals 1 if there exist an edge (vi, vj) ∈ E , and 0 otherwise. It is typically used to
represent dense graphs.

1

2 DD2458 – Popup HT 2009

The picture above illustrates a directed graph with its corresponding adjacency
matrix.

For directed graphs the first index usually indicates the edge’s start vertex and
the second index indicates the edge’s end vertex.

For undirected graphs the upper or lower triangle of the matrix is enough to
store all edge information since (vi, vj) equals (vj , vi).

A distance matrix is a special form of adjacency matrix where element Dij

instead contains the length of the shortest path from vi to vj . See the Floyd-
Warshall’s shortest path algorithm for an example of where it is commonly being
used.

1.2.2 Adjacency List

An adjacency list represents the graph through a list of vertices. Every vertex has
in turn a list of edges incidenting from it.

Graphs 3

The picture above illustrates a directed graph with its corresponding adjacency
list.

Adjacency lists are typically the data structure of choice, but more memory
intensive than adjacency matrices for very dense graphs.

Performance characteristics varies greatly depending on the exact list-structures
being used. Linked lists, vectors, sets/maps and hash sets/maps are all commonly
seen.

Adjacency lists do not have adjacency matrices’ limitation of only being able
to represent a single edge between a pair of vertices.

1.3 Tips

When working with graph tasks it is often obvious what kind of graph it is and
what sort of properties it holds by just reading the task description, but there are
exceptions.

It is usually worth the time to closely analyze the graph properties before
starting to write the data structure or choosing the algorithm to solve the problem.
Is the graph directed or undirected and is it perhaps a good idea to first "reverse"
all edges? Can the edge weights be negative, forcing us to use other algorithms?
If so, then how will negative cycles influence the algorithm? Is it worth to look at
the inverted/complemented graph (i.e. G’ = (V, EC))?

Especially watch out for the "tricky" cases such as the existence of self-loops
or multiple edges between pairs of vertices. More often than not, those can be a
source of very hard-to-spot bugs.

2 Algorithms

The lecture brought up the most common algorithms for solving the following graph
related problems:

• The Shortest Path

• Minimal Spanning Tree

• Topological Sorting

• Strongly Connected Component

• Maximum Flow / Minimal Cut

2.1 The Shortest Path

3 Dijkstra’s algorithm

Dijkstra’s algorithm is a greedy algorithm for finding the shortest path from a
source vertex to all other vertices in a graph.

4 DD2458 – Popup HT 2009

3.1 Description

It works in this way: All vertexs are assigned two variables;

Definition 3.1 Distance: the shortes distance from the start vertex to this vertex
found so far.

Definition 3.2 Previous: the previous vertex on that path.

Choose the vertex v with the shortest distance, dist[v], from a set of all non-
used vertexs Q. For all neighbors of v, {u1, u2, . . . , un} calculate the new distance.
If the new distance is shorter than the previous distance of ui, then replace the
old distance of ui with the new distance and replace the old previous of ui with v.
Repeat this untill Q is empty.

The algorithm will fail on graphs which has negative edges. The reason for this
is that one short cheap path might be chosen while a seemingly longer and more
expensive path might include a negative edge, making it the shortest.

This is a greedy algorithm because it selects the vertex with minimum-weight
not yet processed to work on. With a simple implementation (i.e. linear search
for the vertex with smallest distance in Q) the algorithm has complexity O(|V |2)
derived from the fact that it searches for the smallest dist[] in Q |Q|/2 times, |Q|=|V|
thus the complexity.

With smarter implementations using adjacency lists and a heap/balanced tree
based priority queue for Q, the complexity can be reduced to O(|E|log|V |)

Fibonacci heaps further improves the asymptotic bounds to O(|E|+|V |∗log|V |),
but due to the increased complexity of writing the data structure and worse constant
term, it’s only of practical interest for huge graphs (certainily larger than the ones
ever appearing.

Graphs 5

Algorithm 1: Dijkstra’s algorithm
Input: A start vertex s and a graph G with non-negative
edge weights, directed or undirected and if unweighed, all
edges should be considered to have a weight of 1. The graph
can be unconnected, however, if that is the case and if the
algorithm is modified to search for a specific end vertex, then
it should also be modified to be able to give the answer: im-
possible.
Output: The shortest path from s to all other vertexs.
Dijkstra(G, s, weight[])
(1) foreach vetex v in G
(2) dist[v] = infinity
(3) prev[v] = undefined
(4) dist[s] = 0
(5) Q = all vertices in G
(6) while Q not empty
(7) u = vertex with minimal distance in Q
(8) remove u from Q
(9) if dist[u] = infinity
(10) break
(11) foreach neighbor v of u
(12) if dist[u] + weight[u,v] < dist[v]
(13) dist[v] = dist[u] + weight[u,v]
(14) prev[v] = u
(15) return dist[]

4 Bellman Ford

Bellman Fords algorithm for solving the shortest path problem works on the same
principles as Dijkstra’s algorithm except that it works through all the edges, instead
of greedily choosing the one with best distance each time. As a result, Bellman Ford
can handle graphs with negative weights because it takes all edges into account and
it can also detect negative cucles. The complexity is thereby O(|V ||E|).

This algorithm uses the same definitions as Dijkstra.

6 DD2458 – Popup HT 2009

Algorithm 2: Bellman Ford
Input: A start vertex s and a graph G, directed or undirected
and if unweighed, all edges should be considered to have a
weight of 1.
Output: The shortest path from s to all other vertexs.
Bellman Ford(G = (V, E), s, weight[])
(1) foreach vetex v in V
(2) dist[v] = infinity
(3) prev[v] = undefined
(4) dist[s] = 0
(5) foreach u in V
(6) foreach (v, w) in E
(7) if dist[v] + weight[v,w] < dist[w]
(8) dist[w] = dist[v] + weight[v,w]
(9) prev[w] = v
(10) foreach (v, w) in E
(11) if dist[v] + weight[v,w] < dist[w]
(12) Negative cycle
(13) return dist[]

5 Floyd-Warshall

Floyd warshall is a dynamic algorithm that produces the shortest path between all
vertices in the graph. It does this by filling up a path-matrix with distances: The
matrix is initialized to contain all edge weights. Then try to make new paths by
using all pairs of edges and adding vertice nr 1 to each pair, then nr 2 and so on.

The complexity of this algorithm is O(|V |3) because we repeat the operation
of trying to find the shortest path between all nodes |V| times producing the com-
plexity.

Algorithm 3: Floyd-Warshall
Input: a 2-dimensional matrix path[][] initialized with
edgeweights, number of vertices n
Output: The shortest path from all vertices to all other
vertices.
Floyd-Warshall(path[][])
(1) for k = 1 to |V |
(2) foreach (i, j) in {1, .., n}2
(3) path[i][j] ← min (path[i][j], path[i][k] +

path[k][j])

Graphs 7

5.1 Minimal Spanning Tree

Any connected graph without cycles is a tree.
Given an undirected, connected graph G. The minimum spanning tree (MST)

of G is the tree that contains all vertices of G and has the lowest possible total edge
weight.

The lecture presented two algorithms that finds the MST in a graph, Kruskal
and Prim.

5.1.1 Kruskal

Kruskal’s algorithm to find a MST in a graph is a greedy algorithm that runs in
O(|E| log(|E|)). It works by starting with all the nodes in clusters (one cluster for
each vertex at the beginning), then for all edges it takes the cheapest and adds it
to the tree unless it creates a cycle. In other words it adds the edge to the tree if
the edge’s start vertex is in a different cluster then the edge’s end vertex. Then it
merges the two clusters.

Algorithm 4: Kruskal’s Algorithm.
Input: An undirected, connected graph G=(V,E)
Output: The minimum spanning tree of G.
Kruskal(G)
(1) foreach vertex v ∈V
(2) Create cluster C(v)
(3) Define a tree T ← ∅
(4) Q contains all edges in G
(5) while T has fewer than |V|-1 edges
(6) (u, v) ← Q.removeMinimum()
(7) if C(u) 	= C(v)
(8) Add edge (u, v) to T
(9) Merge cluster C(u) and C(v) into one cluster
(10) return T

5.1.2 Prim

Prim’s Algorithm is another algorithm for finding MST in an connected graph.
Usually the graph is weighted aswell, if not every edge weight should be considered
one and any spanning tree is the minimum spanning tree. The algorithm has
time complexity for most implementations O(|E| log(|V |)) (when a heap is used
to pick the next vertex to consider). The algorithm can be improved further by
implementing it with Fibonacci heap and bring the time complexity to O(|E| +
|V | log(|V |)) which is good when the graph is dense (has many edges).

It works by starting in an arbitrary vertex, u, and adding it to a new set of
vertices, Vnew. Then choose edge (u, v) with minimal weight such that u is in Vnew

but v is not in Vnew. Now add v to Vnew and (u, v) to Enew

When Vnew = V the algorithm is done, Enew and Vnew now describes the MST.

8 DD2458 – Popup HT 2009

(The algorithm bears a close resemblance to Djikstra’s algorithm which is used
to find the shortest path in a graph between two vertices.)

Algorithm 5: Prim’s Algorithm.
Input: A connected graph G=(V,E)
Output: The minimum spanning tree of G.
Prim(G)
(1) foreach vetex v in G
(2) dist[v] ← infinity
(3) prev[v] ← undefined
(4) visited[v] ← false
(5) Choose an arbitrary vertex s to start in.
(6) dist[s] ← 0
(7) for 1 to |V|
(8) Find u so that u is minimal and dist[u] = infinity

and visited[u] ← false.
(9) visited[u] ← true
(10) foreach neighbour v of u
(11) if visited[v] = false and weight(u, v) < dist[v]
(12) dist[v] ← weight(u, v)
(13) prev[v] ← u

5.2 Topological Sorting
Topological sorting of a directed acyclic graph is to order the vertices in such a way
where each edge leaves from a vertex ordered earlier than the vertex being entered
to

5.2.1 Khan’s Algorithm

Perhaps the simplest and most intuitive algorithm is the greedy one by Khan.

Algorithm 6: Khan’s Algorithm.
Input: A directed acylic graph graph G = (V, E).
Output: Topological sorted list of vertices.
Khan(G)
(1) S ← empty list
(2) Q ← G
(3) while there is a vertex x ∈ Q with in-order 0
(4) insert x into S
(5) remove x and edges with x from Q
(6) if Q is empty
(7) return "G is not acylic"
(8) return S

Graphs 9

Time complexity is O(|V| + |E|). Memory complexity can be decreased to
O(|V|) if Q doesn’t store an actual copy of the graph but instead only the orders
of the vertices.

5.2.2 Postorder DFS on Reversed Graph

It is easy to see that a postorder DFS traversal of the edge-reversed DAG-trees will
result in a topological sorting.

Algorithm 7: TopSortDFS
Input: A directed acylic graph G = (V, E).
Output: Topological sorted list of vertices.
TopSortDFS(G)
(1) S ← empty list
(2) foreach vertex v in S
(3) visit(v, S, G)
(4) return S

visit(v, S, G)
(1) if v hasn’t been visited
(2) mark v as visited
(3) foreach vertex x with an edge from x to v in G
(4) visit(x, S, G)
(5) insert v to S

Time complexity can easily be made to O(|V| + |E|).
This DFS-algorithm is even useful for problems where there won’t be any guar-

antees that the graph is directed and/or acylic. For example, while the sorted order
is then not necessary a "proper" topological sorted order, such a "best-effort" order
can still aid one in determining which exact parts of the graph are involves in cycles.

5.3 Strongly Connected Component
A strongly connected component is a subset of the vertices in a graph where each
vertex still can reach every other vertex in the subset even if an arbitrary edge is
removed.

For those who are interested, there is the simpler to remember Kosaraju’s al-
gorithm and the slightly more complex and efficient Tarjan’s algorithm.

5.4 Maximum Flow / Minimal Cut
This problem type was only mentioned as a good tool to solve many different
problems, but was not looked at more closely since the students should already
have experience in working with this kind of problems.

