Exercises 4.3 (page 300)

5. Use the proof rule for assignment and logical implication as appropriate to show the validity of
(a) $\vdash_{\text {par }}(x>0) \mathrm{y}=\mathrm{x}+1(y>1)$

$$
\frac{\vdash x>0 \rightarrow x+1>1 \quad \overline{(x+1>1) y=x+1(y>1)}}{\text { Assignment }} \text { Implied }
$$

10. Prove the validity of the sequent $\vdash_{\text {par }}$ (T) $P(z=\min (x, y))$, where $\min (x, y)$ is the smalest number of x and $y-$ e.g. $\min (7,3)=3-$ and the code of P is given by

$$
\begin{gathered}
\text { if }(x>y)\{ \\
z=y ; \\
\} \text { else }\{ \\
z=x \\
\} \quad
\end{gathered}
$$

By proof tree:

$$
\begin{aligned}
& \frac{\vdash \operatorname{true} \wedge \neg(x>0)^{\curlyvee} \rightarrow x=\min (x, y) \overline{(x=\min (x, y)) z=x(z=\min (x, y))}}{\text { Assignment }} \text { Implied }
\end{aligned}
$$

By proof tableaux:

$$
\begin{array}{ll}
\text { Otrue) } & \text { Precondition } \\
\text { if }(x>y)\{ & \\
\quad(\text { true } \wedge x>y) & \text { If } \\
\quad \mid y=\min (x, y) D & \text { Implied }(\checkmark) \\
\quad z=y ; & \\
\quad \mid z=\min (x, y) D & \text { Assignment } \\
\} \text { else }\{ & \\
\quad \text { true } \wedge \neg(x>y) D & \text { If } \\
\quad \mid x=\min (x, y) D & \text { Implied }(\checkmark) \\
z=x ; & \\
\quad \mid z=\min (x, y) D & \text { Assignment } \\
\} & \\
\lfloor z=\min (x, y) D & \text { Postcondition }
\end{array}
$$

13. Show that $\vdash_{\text {par }}(x \geq 0)$ Copy1 $(x=y)$ is valid, where Copy1 denotes the code

$$
\begin{aligned}
& a=x \\
& y=0 \\
& \text { while }(a!=0)\{ \\
& \quad y=y+1 \\
& \quad a=a-1 \\
& \}
\end{aligned}
$$

The loop invariant is in this case $a+y=x$
Here is a proof tableaux

$$
\begin{aligned}
& (x \geq 0) \\
& \text { Precondition } \\
& (x+0=x) \quad \text { Implied }(\checkmark) \\
& a=x ; \\
& (a+0=x) \quad \text { Assignment } \\
& y=0 \text {; } \\
& (a+y=x) \quad \text { Assignment } \\
& \text { while }(a!=0)\{ \\
& (a+y=x \wedge a \neq 0) \quad \text { Partial-while } \\
& ((a-1)+(y+1)=x) \quad \text { Implied }(\checkmark) \\
& y=y+1 \text {; } \\
& ((a-1)+y=x) \quad \text { Assignment } \\
& a=a-1 \text {; } \\
& 0 a+y=x r p \quad \text { Assignment } \\
& \text { \} } \\
& (a+y=x \wedge \neg(a \neq 0)) \quad \text { Partial-while } \\
& (x=y) \quad \text { Implied } \checkmark
\end{aligned}
$$

We get the following three proof obligations:

$$
\begin{array}{ll}
\vdash x \geq 0 \rightarrow x+0=x & \text { holds since } x+0=0 \\
\vdash a+y=x \wedge a \neq 0 \rightarrow(a-1)+(y+1)=x & \text { holds since }(a-1)+(y+1)=a+y \\
\vdash a+y=x \wedge \neg(a \neq 0) \rightarrow x=y & \text { holds since } a+y=y \text { when } a=0
\end{array}
$$

14. Show that $\vdash_{\text {par }}(y \geq 0)$ Mult1 $(z=x \cdot y)$ is valid, where Mult1 is:

$$
\begin{aligned}
& \begin{array}{l}
a=0 \\
z=0 \\
\text { while }(a!=y)\{ \\
\quad z=z+x \\
\quad a=a+1 \\
\}
\end{array}
\end{aligned}
$$

The proof tableaux is similar to the one in the previous solution, but with the invariant $z=a \cdot x$.

