LTL Syntax

Let p range over a given set *Atoms* of atomic propositions.

 $\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \mathsf{X}\phi \mid \mathsf{G}\phi \mid \mathsf{F}\phi \mid \phi \mathsf{U}\phi$

Models and Paths

A model is a tuple $\mathcal{M} = (S, \rightarrow, L)$ where:

- (i) S is a set of states,
- (ii) $\rightarrow \subseteq S \times S$ is a transition relation, (iii) $L: S \rightarrow 2^{Atoms}$ is a labelling function.

A path of \mathcal{M} is an infinite sequence of states $\pi = s_0 s_1 s_2 s_3 \dots$ such that $s_i \rightarrow s_{i+1}$ for all $i \geq 0$. Given such a path, we denote by $\pi(i)$ the *i*-th element s_i of π , and we denote by π^i the *i*-th suffix $s_i s_{i+1} s_{i+2} s_{i+3}$ of π .

LTL Semantics

Let $\mathcal{M} = (S, \rightarrow, L)$ be a model, and let π be a path of \mathcal{M} .

$$\begin{split} \pi \models^{\mathcal{M}} p & \stackrel{\text{def}}{\Leftrightarrow} \quad p \in L(\pi(0)) \\ \pi \models^{\mathcal{M}} \neg \phi & \stackrel{\text{def}}{\Leftrightarrow} \quad \text{not } \pi \models^{\mathcal{M}} \phi \\ \pi \models^{\mathcal{M}} \phi \land \psi & \stackrel{\text{def}}{\Leftrightarrow} \quad \pi \models^{\mathcal{M}} \phi \text{ and } \pi \models^{\mathcal{M}} \psi \\ \pi \models^{\mathcal{M}} \mathsf{X}\phi & \stackrel{\text{def}}{\Leftrightarrow} \quad \pi^{1} \models^{\mathcal{M}} \phi \\ \pi \models^{\mathcal{M}} \mathsf{G}\phi & \stackrel{\text{def}}{\Leftrightarrow} \quad \forall i \geq 0. \ \pi^{i} \models^{\mathcal{M}} \phi \\ \pi \models^{\mathcal{M}} \mathsf{F}\phi & \stackrel{\text{def}}{\Leftrightarrow} \quad \exists i \geq 0. \ \pi^{i} \models^{\mathcal{M}} \phi \\ \pi \models^{\mathcal{M}} \phi \mathsf{U}\psi & \stackrel{\text{def}}{\Leftrightarrow} \quad \exists i \geq 0. \ (\pi^{i} \models^{\mathcal{M}} \psi \land \forall j < i. \ \pi^{j} \models^{\mathcal{M}} \phi) \end{split}$$

Model \mathcal{M} at state $s \in S$ satisfies formula ϕ , denoted $\mathcal{M}, s \models \phi$, if all paths π of \mathcal{M} starting at s satisfy ϕ .