Part II. Hoare Logic and Program Verification

Dilian Gurov

Part II. Hoare Logic and Program Verification

Props: safety of data manipulation Models: source code
Specs: logic assertions
Method: Hoare logic, VCG
Tool: Verifast

Specification and Verification

- Program specification
- states program correctness, formally
- relates properties of states before och after the execution
- Program verification
- proves program correctness, formally
- relative to a specification

Why specify programs?

- Good for documentation: capture unambiguously what the program should do (and not how)
- Programs annotated with specs can be fed into static checkers
- However, specifications:
- require expertise and time
- can get large and difficult to handle

Why verify programs?

- Testing can only find errors, but cannot prove their absense
- However, verification is expensive:
- requires formal specs
- requires expertise and time
- faces decidability and complexity issues
- Therefore:
- use light-weight tools for critical parts

Code Verification

- Code verification
- the code itself is the model!
-i.e., no abstraction...
- ...but must still be based on a formal description of execution: a formal semantics of the programming language

Semantics of Programming

Languages

- Semantics

- a formal definition of how programs execute
- can be given in various ways
- see course DD2457

Semantics of Programming

 Languages- Natural semantics
- relates states before and after the execution
- is defined inductively on the program structure
- here: informal understanding

A Core Programming Language

- A simple program:

$$
\begin{aligned}
& y=1 ; \\
& \text { z = 0; } \\
& \text { while }(z \quad!=x)\{ \\
& \quad \begin{array}{l}
z=z+1 ; \\
y=y * z ;
\end{array} \\
& \}
\end{aligned}
$$

Formal Syntax

- Arithmetic expressions

$$
E::=n|x|(E+E)|(E-E)|(E * E)
$$

- Boolean expressions
$B::=$ true | false $|(E<E)|$
$(!B)|(B \& B)|(B \| B)$
- Commands

$$
\begin{aligned}
C::= & x=E|C ; C| \text { if } B\{C\} \text { else }\{C\} \mid \\
& \text { while } B\{C\}
\end{aligned}
$$

States and Configurations

- State (in this context)
- captures the values of the variables in the program
- formally, a mapping Var \rightarrow Int
- Configuration
- describes where we are in the execution
- consists of a control point and a state

State Properties

- State properties
- can be expressed as logic formulas in predicate calculus (over program variables)
- are called assertions
t.ex. $x>y$ eller $\exists z(x=2 * z)$
- We associate assertions with control points in the program
- could be seen as control point properties

Program Specification

- Can be accomplished with two assertions:
- precondition
- postcondition
- Formal notation: Hoare tripples

$$
\langle\phi\rangle P\langle\psi\rangle
$$

read (roughly): if execution of program P starts in a state where precondition ϕ holds, then the execution ends in a state where postcondition ψ holds

Specification Example

- The factorial program Fac1

```
y = 1;
z = 0;
while (z != x) \{
        \(z=z+1 ;\)
        y = y * z;
\}
```

can be specified with the Hoare tripple

$$
\langle x \geq 0\rangle \text { Fac1 }\langle y=x!\rangle
$$

Partial Correctness

$\mid={ }_{\text {par }}\langle\phi\rangle P\langle\psi\rangle$ holds if:
if the execution of P starts in a state where precondition ϕ holds,
and the execution terminates,
then postcondition ψ holds in the final state
terminate, regardless of the start state

Total Correctness

$\mid={ }_{\text {tot }}\langle\phi\rangle P\langle\psi\rangle$ holds if:
if the execution of P starts in a state where precondition ϕ holds,
then the execution terminates,
and postcondition ψ holds in the final state

- When does $\mid==_{\text {par }}\langle$ true $\rangle P\langle$ false \rangle hold?
when execution of P does not

Example

- When does $\mid==_{\text {tot }}\langle$ true $\rangle P\langle$ false \rangle hold? never!

Example

Logic Variables

- Can the factorial program Fac2

$$
\begin{aligned}
& \text { y = 1; } \\
& \text { while (x != 0) \{ } \\
& \qquad \begin{array}{l}
y=y * x ; \\
\\
\text { x }=x-1 ;
\end{array}
\end{aligned}
$$

be specified with the Hoare tripple

$$
\langle x \geq 0\rangle F a c 2\langle y=x!\rangle
$$

Logic Variables

- We need additional variables, socalled logic variables, to capture how the final values of the variables relate to the initial values
- These variables are considered universally quantified in a Hoare tripple

Program Specification

- It should be clear from the specification how the program can be used - without knowing the code itself!

$$
\left\langle x \geq 0 \wedge x=x_{0}\right\rangle \operatorname{Fac} 2\left\langle y=x_{0}!\right\rangle
$$

$x \geq 0$ then the program terminates
$x=x_{0}$ binds the start value of x
$y=x_{0}$! relates the final value of y to the initial value of x

Hoare Logic

- Consists of a set of rules
- for reasoning over Hoare tripples
- to verify programs (partial correctness)
- Proofs
- in the form of proof trees ...or so-called "tableaux"
- reduce the validity of Hoare tripples to the validity of predicate logic formulas over arithmetic

Assignment Rule
\qquad

$$
\langle\psi[E / x]\rangle x=E\langle\psi\rangle
$$

- "propagates" the postcondition backwards

Implied Rules
 $\frac{\mid-\phi^{\prime} \rightarrow \phi \quad\langle\phi\rangle C\langle\psi\rangle}{\left\langle\phi^{\prime}\right\rangle C\langle\psi\rangle}$

$\langle\phi\rangle C\langle\psi\rangle \quad \mid-\psi \rightarrow \psi{ }^{\prime}$
$\langle\phi\rangle C\left\langle\psi^{\prime}\right\rangle$

Sequential Composition Rule

$\langle\phi\rangle C_{1}\langle\eta\rangle \quad\langle\eta\rangle C_{2}\langle\psi\rangle$
$\langle\phi\rangle C_{1} ; C_{2}\langle\psi\rangle$

- introduce an intermediate assertion η in the control point preceding C_{2}

Example

-What does this program do

$$
\begin{aligned}
& z=x ; \\
& x=y ; \\
& y=z ;
\end{aligned}
$$

and how can this be specified?

Example

- Program Swap

$$
\begin{aligned}
& z=x ; \\
& x=y ; \\
& y=z
\end{aligned}
$$

can be specified with
$\left\langle x=x_{0} \wedge y=y_{0}\right\rangle \operatorname{Swap}\left\langle x=y_{0} \wedge y=x_{0}\right\rangle$

The Proof Tree

- Too big to be shown here...
- ...show on whiteboard instead

Proof Tableaux

- Alternative presentation:
- as tableau
- correctness proofs can be presented as commented (or annotated) programs, where the comments are assertions associated with control points

Tableaux

- A tableau is an annotated program
- An operational interpretation: if execution begins in a state where the first annotation (precondition) holds, then every time the execution reaches a control point, all assertions associated with this control point hold

If Rule

$\underline{\langle\phi \wedge B\rangle C_{1}\langle\psi\rangle \quad\langle\phi \wedge \neg B\rangle C_{2}\langle\psi\rangle}$
$\langle\phi\rangle$ if $B\left\{C_{1}\right\}$ else $\left\{C_{2}\right\}\langle\psi\rangle$

Proofs in Tableau Form

- A proof in tableau form is a program annotated with at least one assertion at every control point, where the annotations match the rules (patterns)
- The proof process can be seen as completion of the initial annotation "inwards"
- Assertions associated with the same control point give rise to proof obligations

If Rule	
$\langle\phi \wedge B\rangle C_{1}\langle\psi\rangle$	$\langle\phi \wedge \neg B\rangle C_{2}\langle\psi\rangle$
$\langle\phi\rangle$ if $B\left\{C_{1}\right\}$ else $\left\{C_{2}\right\}\langle\psi\rangle$	

Example

- What does the program
if ($\mathrm{x}>\mathrm{P}$) \{ $y=x$;
\} else \{ y = -x; \}
and how can this be specified?

Example

- Program Abs

$$
\begin{gathered}
\text { if }(x>0)\{ \\
y=x ; \\
\} \text { else }\{ \\
\} \quad y=-x ;
\end{gathered}
$$

can be specified with

$$
\left\langle x=x_{0}\right\rangle \operatorname{Abs}\langle y=| x_{0}| \rangle
$$

Partial-while Rule

$\frac{\langle\eta \wedge B\rangle C\langle\eta\rangle}{\langle\eta\rangle \text { while } B\{C\}\langle\eta \wedge \neg B\rangle}$
$\frac{\langle\eta \wedge B\rangle C\langle\eta\rangle}{\langle\eta\rangle \text { while } B\{C\}\langle\eta \wedge \neg B\rangle}$
loop invariant

\square

Example

- Proof
$\langle x<0\rangle$ while $(x!=0)\{\mathrm{x}=\mathrm{x}-1 ;\}\langle$ false \rangle
- Proof
\langle true \rangle while ($\mathrm{x}!=0$) $\{\mathrm{x}=\mathrm{x}-1$; $\}\langle x=0\rangle$

Loop Invariants

- A loop invariant to
while $B\{C\}$
is an assertion η for which

$$
\mid==_{\operatorname{par}}\langle\eta \wedge B\rangle C\langle\eta\rangle
$$

holds

- Big choice, e.g.: false and true

Proof Tableau

$\left\langle x=x_{0}\right\rangle$	Precondition
if (x > 0) \{	
$\left\langle x=x_{0} \wedge x>0\right\rangle$	If
$\langle x=\| x_{0}\| \rangle$	Implied ()
$\mathrm{y}=\mathrm{x}$;	
$\langle y=\| x_{0}\| \rangle$	Assignment
\} else \{	
$\left\langle x=x_{0} \wedge \neg(x>0)\right\rangle$	If
$\langle-x=\| x_{0}\| \rangle$	Implied ()
$\mathrm{y}=-\mathrm{x}$;	
$\langle y=\| x_{0}\| \rangle$	Assignment
\}	
$\langle y=\| x_{0}\| \rangle$	Postcondition

Loop Invariants

- A whole "assertion interval" to choose from:

$$
\mid-\phi \rightarrow \eta \rightarrow \psi \vee B
$$

- Two immediate candidates:
- ϕ
$-\psi \vee B$
in case they are loop invariants!

Example

- Find suitable loop invariants for:
$-\langle x<0\rangle$ while $\quad(\mathbf{x}!=0) \quad\{\mathbf{x}=\mathbf{x}-1 ;\}\langle$ false \rangle
$-\langle$ true \rangle while $(\mathbf{x}!=0) \quad\{\mathbf{x}=\mathbf{x}-1 ;\}\langle x=0\rangle$
- One answer: the preconditions!

```
    Proof Tableau 1

\section*{Proof Tableau 1}
```

<x<0\rangle Precondition

```
<x<0\rangle Precondition
while (x!=0) {
while (x!=0) {
    <x<0^x\not=0\rangle Partial-while
    <x<0^x\not=0\rangle Partial-while
    <x-1<0\rangle Implied ( )
    <x-1<0\rangle Implied ( )
    x = x - 1;
    x = x - 1;
    <x<0\rangle Assignment
    <x<0\rangle Assignment
}
}
<x<0^\neg(x\not=0)\rangle Partial-while
<x<0^\neg(x\not=0)\rangle Partial-while
\langlefalse\rangle Implied ( )
```

```
\langlefalse\rangle Implied ( )
```

```

\section*{Proof Tableau 2}
```

<true> Precondition
while (x!=0) {
<true ^x\not=0\rangle Partial-while
\true\rangle Implied ()
x = x - 1;
\true\rangle Assignment
}
\langlerue }\wedge\neg(x\not=0)\rangle\quad Partial-while
\langlex=0\rangle Implied ()

```

\section*{Example}
- Verify the factorial program Fac1
\[
\begin{aligned}
& \mathrm{y}=1 \text {; } \\
& \text { z = 0; } \\
& \text { while (z != x) \{ } \\
& \text { z = z + 1; } \\
& \text { y = y * } z \text {; } \\
& \text { \} }
\end{aligned}
\]
specified with the Hoare tripple
\[
\left\langle x \geq 0 \wedge x=x_{0}\right\rangle \operatorname{Fac} 1\left\langle y=x_{0}!\right\rangle
\]

\section*{Proof Tableau}
```

\langlex\geq0^x=\mp@subsup{x}{0}{}\rangle
<1=0!^x=\mp@subsup{x}{0}{}\wedge0\geq0
y = 1;
\langley=0!\wedgex= \mp@subsup{x}{0}{}\wedge 0\geq0
z = 0;
<y=z!^x=\mp@subsup{x}{0}{}\wedgez\geq0\rangle

```

Precondition Implied ( )

Assignment
Assignment
while ( \(z!=x\) )
\(\left\langle y=z!\wedge x=x_{0} \wedge z \geq 0 \wedge z \neq x\right\rangle \quad\) Partial-while
\(\left.y \cdot(z+1)=(z+1)!\wedge x=x_{0} \wedge z+1 \geq 0\right\rangle\) Implied ( )
z = z +1 ;
\(y \cdot z=z!\wedge x=x_{0} \wedge z \geq 0\)
\(\mathrm{y}=\mathrm{y}\) * z ;
\(y=z!\quad\) z;
\}
\(\left.y=z!\wedge x=x_{0} \wedge z \geq 0 \wedge \neg(z \neq x)\right\rangle \quad\) Partial-while
\(\left\langle y=x_{0}!\right\rangle\)
Impli```

