
1

DD2460 Software Safety and Security

Introductory Lecture

Dilian Gurov

1

Lecture Outline

1. The team

2. Introduction to the course

3. Course syllabus

4. Course objectives

5. Course organization

2

1. Team

• First lecturer: Dilian Gurov
– E-mail: dilian@csc.kth.se

– Phone: 08-790 81 98 (office)

– Office: E-bng, floor 4, room 4417

• Second lecturer: Gurvan Le Guernic
– E-mail: gurvan@kth.se

• Course assistant: Musard Balliu
– E-mail: musard@kth.se

3

2. Software Safety and Security

• Software safety: 
– will not damage people or other systems

– will not fail

• Software security: 
– protected against malicious attack

– data integrity: only authorized access

– data confidentiality: does not leak information

4

Software Safety

• A software specification error or design flaw can
contribute to or cause a system failure or 
erroneous human decision

• Example areas:
– embedded devices like a pacemaker or automotive

brake control

– software controlling nuclear power plants or 
aerospace rockets

• In summary: no illicit or undesired behaviour

5

Software Security

• Engineering software so that it continues
to function correctly under malicious attack

• Typical vulnarabilities:
– memory leaks

– buffer overflows

• Vulnarabilities give rise to threats

6



2

Information Security

• Network security: 
– cryptographic protocols, firewalls, intrusion 

detection

• Secure information flow: 
– confidentiality, integrity

• Access control: 
– delegation, authorization, trust management

7

Language-based Security

• Application-level attacks: 
– Trojan horses, worms, buffer overrun attacks, 

exploit attacks, covert channels, and 
malicious code

• Language-based protection mechanisms:
– static security analysis

– program transformation

– stack inspection

8

Formal Analysis

• Formal methods: 

collection of formal notations and 
techniques (i.e. based on discrete
mathematics and mathematical logic) for 
modelling and analysis of program 
behaviour.

• Common goal: 

The design of correct systems. 
9

Why Formal Methods?

• Only formal methods can capture 
correctness precisely. Basis for tools.

• But: formal techniques are expensive
• Most needed for: 

– safety-critical systems
– commercially-critical systems (security)

• Most succesful for: ”small” systems
– embedded systems
– communication protocols

10

Formal Verification

• Various techniques

• Ingredients:

– Property class

– Modelling language

– Property specification language

– Verification method (decidability, scalability)

– Tool support (degree of automation)

11

3. Course Syllabus

• We study three fundamental techniques
for the analysis of programs, with focus 
on safety and security.

• The techniques are based on types and 
logics for programs, and allow to discover 
certain types of illicit behaviour or deduce 
the absence of such behaviour. 

• We consider three successful tools
implementing such techniques.

12



3

Part I. Temporal Logic and 
Model Checking

Props: Safety of state sequences
Models: Kripke structures, ProMeLa
Specs: Temporal logic formulas (LTL)
Method: Model checking
Tool: SPIN

13

Part II. Hoare Logic and 
Program Verification

Props: Safety of data manipulation
Models: Source code (Java) (op. sem.)
Specs: Hoare logic assertions (JML)
Method: VCG, Symbolic execution
Tool: VeriFast

14

Part III. Information Flow 
Analysis

Props: Confidentiality + integrity of data
Models: Source code (Java)
Specs: Security levels
Method: Type checking
Tool: Jif

15

4. Course Objectives

• Aim: provide working familiarity with three 
methods and tools for the analysis of safety 
and security of software, in theory and in 
practice.

• Grading: to pass the course, a student has to 
demonstrate the ability to apply the methods 
discussed in the course; for the highest grades 
he/she has also to be proficient in the 
theoretical underpinnings of these methods. 

16

Intended Learning Outcomes

After the course, you should be able to: 

1. Identify, specify and verify important safety and 
security properties using suitable automated 
tools.

2. Explain the underlying techniques and be able 
to argue for their correctness and limitations.

3. Correctly interpret and evaluate the results of 
the analysis.

17

5. Course Organization

• 17 classes: mixed lectures and tutorials

• 3 lab sessions: for reporting only!

• 3 take-home assignments

• Course web page:

www.csc.kth.se/DD2460/sss12/

18



4

Course Literature

• Course book: 

”Logic in Computer Science” 

by Huth and Ryan (see Kårbokhandeln)

• Additional material: on the web page

don’t print without need!

19

Auctioning System

• All three lab assignments are based on the 
same software system that you will 
develop: an auctioning system written in 
Java

• The three labs will analyse three different 
aspects of the system or selected 
components

20

Lab Assignments

• SPIN lab:

safety of synchronization behaviour

• VeriFast lab: 

safety of shared data manipulation

• Jif lab:

confidentiality and integrity of private data

21

Lab Reports

• All three lab assignments will be presented 
at dedicated lab sessions (in lab room 
Orange) on the basis of a written report

• The labs will be graded F-C based on
– quality of work

– quality of report

22

Tools

• Three tools are installed on the Ubuntu 
machines in the lab rooms (Orange):

– SPIN: ispin

– VeriFast: vfide

– Jif: jif

23

Take-home Assignments

• Three take-home assignements will 
examine your understanding of the three 
analysis techniques and the theoretical 
underpinnings of the tools

• The assignments will be graded F-A

24


