
1

DD2460 Software Safety and Security

Security Policies and Policy 
Enforcement

Dilian Gurov

1

Security Policies

Security policies specify the acceptable 
executions of programs. Typical policies are:

• Access control policies

• Information flow policies

• Availability policies

2

Security Policies

• Access control policies define restricted 
access to resources, like:
– ”only user A can read file foo” (on a multi-user 

system)

– ”an applet can allocate at most 100KB memory” (on a 
smart card platform)

– ”a game may send at most 3 SMSs per game” (on a 
mobile device)

3

Security Policies

• Information flow policies capture that 
confidential information does not flow to a 
location where this confidentiality is not 
preserved, like:
– ”information about a patient should not leak from the 

hospital database”

– ”the value of a key should stay confidential”

4

Security Policies

• Availability policies restrict continuous denial 
of service:
– ”if the web page is requested, it will eventually be 

available”

– ”the bandwith can not reduce by more than 30% of its 
peak value”

5

Security Policies

• Security policies can be phrased and specified 
as sets of (acceptable) executions

• Hence, they are naturally phrased as predicates 
on sets of executions, and even better 
(whenever possible) as predicates on 
executions

• Program executions are usually filtered on a set 
of security-relevant actions, determined by the 
nature of the policy at hand

6



2

Security Automata

• Many security policies can be expressed by 
means of security automata

• Security automata are essentially Büchi 
automata with accepting states only (and an 
implicit non-accepting ”error” state)

• The input alphabet of the automaton is the set of 
security-relevant actions of the given policy

• Security automata capture safety properties 
only

7

Enforcing Security Policies

Security policies can be enforced on a program in 
a variety of ways:

• Static analysis: verify that the program adheres
to the policy (i.e. satisfies the property)

• Reference monitor: observe the execution and 
terminate it if it is about to violate the policy

• Program rewriting: re-write the program to
change its behaviour to adhere to the policy

8

Reference Monitors

• Common in hardware and system software
– operating systems mediate access to files and other 

resources

– traps caused when executing system calls can be 
used to invoke a reference monitor

• Must be protected from subversion by the target 
systems it monitors

• Must receive control whenever the target system 
participates in a security-relevant action

9

Reference Monitors

• The restrictions on what policies can be 
enforced by reference monitors come from:
– the means by which target system events cause the 

monitor to be invoked (observability), and from

– the means by which the monitor can influence the 
behaviour of the target system (controlability)

• For instance, security policies that govern 
operating system calls are feasible because 
traps accompany system calls

10

Reference Monitors

There are two principle kinds of reference
monitors:

• Explicit monitors: all security-relevant actions 
are intercepted by a wrapper that mediates
between the monitored application and the 
system

• Embedded monitors: the code of the 
application is re-written to merge (in-line) the 
monitor code around security-relevant actions

11

Embedding Security Automata

This can be performed in four steps:
1.Insert a copy of the security automaton before each 
security-relevant action (instruction)

2.For every automaton, evaluate all transition predicates 
based on the following instruction

3.Simplify the automata by eliminating edges with 
predicates that evaluate to false and resulting unreachable 
states

4.Compile the resulting automata to code that updates the 
monitor state or aborts the application on violation of the 
policy

12


