
1

DD2460 Software Safety and Security

Introduction to VeriFast for Java

Dilian Gurov

1

The VeriFast Tool

• VeriFast is a modular, sound program verifier for
sequential and concurrent C and Java programs

• If VeriFast reports that a program is correct:

1. does not raise NullPointerException or
ArrayIndexOutOfBoundsException

2. does not contain data races (memory safety)

3. assertions and method contracts (pre- and
postconditions) are respected in every program
execution

2

Object Oriented Programs

Verification of OO programs is tricky because of a
number of reasons, most notably:

• aliasing: problematic for modular reasoning

• inheritance: dynamic call resolution

Concurrency adds to the complexity:

• race conditions, deadlocks

VeriFast is based on modular verification,
symbolic execution and separation logic

3

Modular Verification

VeriFast performs modular verification, which is
crucial for achieving scalability of verification:

• every method is specified with a method
contract (a pre- and a postcondition) and is
verified separately

• when verifying a method, method calls are
replaced by the respective method contracts:
– the precondition is asserted, and then

– the postcondition is assumed

4

Symbolic Execution

• VeriFast symbolically executes the method
body, starting in a symbolic state that represents
an arbitrary concrete state that satisfies the
precondition

• A symbolic state consists of:
– the symbolic store: maps variable names to symbolic

values

– the symbolic heap: a multiset of heap chunks

– the path condition: a list of formulas

5

Symbolic Execution

• VeriFast explores all (feasible) paths from the
method’s entry point to a an exit point of the
method (return statement or uncaught
exceptions)

• At method exit points VeriFast verifies that the
respective symbolic state satisfies the
postcondition to the method

6

2

Separation Logic

• To handle the problems of aliasing and data
races due to shared memory concurrency,
VeriFast employs separation logic

• the program memory (heap) is conceptually
broken down into separate chunks (or more
precisely, permissions to access chunks) that
are passed during method calls and returns, or
distributed between concurrent threads

7

Permissions

• Memory safety is guaranteed by explicitly
specifying the heap chunks that are used
(required/ consumed and ensured/produced) at
a given place of the program

• Permissions themselves can be broken down
into so-called fractional permissions to allow
multiple read access to memory

• Permissions are represented by fractions
between 0 and 1, only 1 giving write access

8

Data Races

• A data race occurs when two threads
concurrently access the same memory location
and at least one of these accesses is a write
access

• VeriFast prevents data races by enforcing the
system invariant that for each memory location,
the total sum of the fractions of the permissions
is at most 1

9

Data Abstraction

• One can define own predicates to be
used in specifications
– to make specifications more concise and abstract

– to capture object invariants

– to encapsulate parts of the heap, for example the
private fields of objects (to get access to its parts one
has to ”open” the predicate)

• Produced/ensured predicates create
symbolic values during symbolic execution

10

Inductive Data Types

• Can be used to present abstract views of
programmer-defined data types

• Specify such data types by relating (with a
predicate) the data type to its abstract view

• for example, lists can be used as abstract views
of stacks

11

More Advanced Features

• Fixpoint Functions
– definitions of functions over inductive data types

– follow the principle of structural induction

• Lemmas
– contracts for pure functions (in specifications)

• Inheritance
– contracts for Java interfaces

– matched against implementation contracts

12

3

A Java Chat Server

• Member: a member of a chat room
– nickname, output stream

• Room: a chat room
– list of present members

• Session: a chat session per member connecting
through a socket
– room, room lock, socket

• Program: constructs one chat room, a lock and a
server socket, creates a new thread and session
for each incoming client connection

13

