
Verifying Java Programs with VeriFast

Jan Smans, Bart Jacobs, Frank Piessens, Willem Penninckx, Frédéric Vogels,
and Pieter Philippaerts

K.U.Leuven, Belgium

Abstract. VeriFast is a modular, sound program verifier for concurrent
Java programs. The verifier takes as input a number of Java source files
annotated with method contracts written in a form of separation logic,
inductive data type and fixpoint definitions, lemma functions and proof
steps. If VeriFast reports that a program is correct, then (1) that program
does not raise NullPointer- or ArrayIndexOutOfBoundsExceptions, (2)
contains no data races, (3) never violates assertions, and (4) the assump-
tions described in the method contracts are guaranteed to hold in each
execution.
This paper informally introduces the VeriFast features relevant to the
verification of Java programs via a number of examples. VeriFast, ad-
ditional documentation and a large number of example programs are
available online at: http://people.cs.kuleuven.be/bart.jacobs/verifast/.

1 Introduction

Reasoning about object-oriented programs is challenging because of aliasing and
inheritance. Aliasing makes it hard to perform local reasoning. That is, at each
field update one must carefully consider which objects might be affected by the
update because the assigned location might be aliased. Inheritance complicates
reasoning because the code that is executed for a method call is not selected
statically but is instead determined during execution. In particular, one must
guarantee that the code that is executed matches the specification used to reason
about the method call. Race conditions and deadlocks further exacerbate this
challenge in concurrent object-oriented programs.

In the past decade, several reasoning techniques have been proposed to deal
with aliasing and inheritance (see Section 9). In this paper, we informally de-
scribe the main features of VeriFast, a program verifier for Java1 based on
one such technique called separation logic [3,4]. The remainder of this paper
is structured as follows. VeriFast checks that a method satisfies its correspond-
ing method contract via symbolic execution (Section 2). Method contracts can
specify the structure of the heap and provide an upper bound on the set of
modifiable memory locations via permissions (Section 3). The set of permissions
required by a method can be abstracted over via predicates (Section 4). Induc-
tive data types (Section 5), fixpoint functions (Section 6) and lemmas (Section 7)

1 VeriFast also targets C programs [1,2].

http://people.cs.kuleuven.be/bart.jacobs/verifast/

allow developers to describe deep properties of their data structures. In order to
reason about inheritance, VeriFast supports dynamically bound instance pred-
icates (Section 8). Finally, we discuss related work (Section 9) and conclude
(Section 10).

2 Method Contracts

VeriFast performs modular verification. This means that the tool analyzes each
method body in isolation using only specifications (not implementations) to
reason about method calls. To enforce modular reasoning, VeriFast requires that
each method is annotated with a method contract, consisting of a pre- and
postcondition. The precondition describes when the method can safely be called,
and vice versa the postcondition describes the return value and the effect of
the method on the program state. As an example, consider the method min

of Figure 1. The method’s precondition imposes no restrictions, and hence the
method can be called at any time with any value for x and y. The postcondition
guarantees that the method’s return value, denoted by result, is effectively
the minimum of x and y. Note that all specifications are written inside special
comments (/*@ ... @*/) which are ignored by the Java compiler but recognized
by our verifier.

int min(int x, int y)

//@ requires true;

/*@ ensures result <= x && result <= y &&

(result == x || result == y); @*/

{

if(x <= y)

return x;

else

return y;

}

Fig. 1. The method min annotated with a method contract.

VeriFast checks that a method body complies with the corresponding method
contract via symbolic execution [5]. That is, the tool symbolically executes the
body starting in a symbolic state that represents an arbitrary concrete state that
satisfies the precondition, and verifies that each resulting post-state satisfies the
postcondition. A symbolic state consists of three subcomponents: the symbolic
store, the path condition and the symbolic heap. The symbolic store is a partial
function mapping local variable names to symbolic values. Each symbolic value
is a first-order term. The path condition is a list of first-order formulas that
encode the assumptions that hold on the path being verified. An inconsistent
path condition corresponds to an unreachable state in the program. Finally, the

2

symbolic heap is a multiset of heap chunks. Each heap chunk has a name and a
list of arguments. Both the name and the arguments are first-order terms.

A single symbolic state can represent a large, potentially infinite number
of concrete states. For example, the initial symbolic store for the method min

of Figure 1 maps x and y to fresh first-order constants. This single symbolic
state represents 264 concrete states. A disadvantage of using symbolic values is
that the verifier cannot necessarily decide which branch should be taken in a
conditional statement or expression. To solve this problem, VeriFast forks the
entire symbolic execution at each conditional. For example, the then branch of
the if statement in the method min - and in general the statements following the
conditional - are executed assuming that x is less than or equal to y, while the
else branch is executed with x > y added to the path condition.

Fig. 2. The VeriFast IDE.

Developers can diagnose verification errors via the VeriFast integrated devel-
opment environment (IDE) shown in Figure 2. The IDE enables developers to
inspect the symbolic states encountered along the path leading to the error in
the panel on the bottom left. The path condition, symbolic heap and symbolic
store of the currently selected state are respectively displayed in the panels on
the bottom center, bottom right and top right.

3

3 Permissions

An important problem in the verification of imperative programs with aliasing
is framing. That is, one should be able to deduce from the method contract an
upper bound on the set of memory locations that the corresponding method
can modify. VeriFast uses separation logic’s permissions [3,4] to tackle the frame
problem. More specifically, whenever a method accesses a memory location, it
must have permission to do so. o.f |-> v denotes (1) the permission to ac-
cess the field f of object o and (2) that o.f currently holds the value v. These
permissions are encoded in the symbolic state as heap chunks. As an example,
consider the method shift in the class Interval of Figure 3. shift’s precon-
dition requires callers to provide the permissions to access low and high. The
precondition imposes no restrictions on the values of both fields, but binds l to
the pre-state value of low and h to the pre-state value of high. The postcondi-
tion returns both permissions to the caller and states that the lower and upper
bounds are shifted by amount.

class Interval {

int low , high;

Interval(int l, int h)

//@ requires l <= h;

//@ ensures low |-> l &*& high |-> h;

{ low = l; high = h; }

void shift(int amount)

//@ requires low |-> ?l &*& high |-> ?h;

//@ ensures low |-> l + amount &*& high |-> h + amount;

{ low += amount; high += amount; }

int getLow ()

//@ requires [?f]low |-> ?l;

//@ ensures [f]low |-> l &*& result == l;

{ return low; }

}

Fig. 3. The class Interval.

How do permissions allow developers to deduce frame information? When
verifying a method call, the permissions described by the callee’s precondition
conceptually transfer from the caller to the callee, and vice versa when the call
returns, the permissions described by the postcondition transfer from the callee
to the caller. If a caller retains the permission to a memory location o.f dur-
ing a call, then the callee cannot modify o.f as VeriFast preserves the system
invariant that only a single read/write permission exists for o.f and only one ac-

4

tivation record holds that permission. As an example, consider the client code of
Figure 4. At program location A, the activation record of main holds the permis-
sions to access the fields of i1 and i2. Moreover, the constructor’s postcondition
holds and hence i2.low equals 20. The precondition of i1.shift(5) demands
permission to access the fields of i1 (but not the fields of i2). Therefore, main
retains the permission to i2.low and i2.high during the call i1.shift(5). As
a consequence, we can deduce that i2.low still equals 20 at program location
B, and that the assertion on the next line will succeed in every execution. Note
that the proof outlined above depends only on the specification of Interval’s
methods, not on their implementations.

void main() {

Interval i1 = new Interval(0, 10);

Interval i2 = new Interval (20, 30); // A

i1.shift (5); // B

assert i2.low == 20;

}

Fig. 4. Client code for the class Interval.

In addition to read/write permissions, VeriFast supports read-only permis-
sions. That is, permissions can be qualified with a fraction between 0 (exclusive)
and 1 (inclusive), where 1 denotes full (read and write) permission and any
other fraction represents read-only permission. We typically omit writing [1]

for full permissions. For example, [f]o.low |-> v denotes read-only access if
f is less than 1 and full permission if f equals 1. Permissions can be split and
merged as required during the proof. For example, a single read/write permission
[1]o.f |-> v can be split into two read-only permissions, [1/2]o.f |-> v and
[1/2]o.f |-> v, and vice versa. The contract of the method getLow of Figure 3
uses fractions to specify that the method only reads the field low by requiring
only an arbitrary fraction f (implicitly assumed to be non-zero) of that field.

Permissions are useful not only for reasoning about framing, but also to
prevent data races. That is, a data race occurs when two threads concurrently
access the same memory location and at least one of these accesses is a write
operation. VeriFast prevents data races by enforcing the system invariant that for
each memory location, the total sum of the fractions of the permissions over all
activation records is at most 1. That is, if an activation record (and by extension
the thread containing the activation record) holds the permission to write o.f,
then no other activation record - in particular activation records in other threads
- holds any permission to o.f. Thus, if one thread is allowed to write a memory
location, then no other thread can concurrently access that memory location.
Note that two threads can concurrently read a memory location if both threads
hold a read-only permission.

5

4 Data Abstraction

Data abstraction is crucial in the construction of modular programs, as it ensures
that internal changes in a module do not propagate to client code. However, the
specification of Interval of Figure 3 was not written with data abstraction in
mind as the specification exposes the internal fields low and high. If the internal
representation of Interval changes, then so does the specification. When the
specification of a module changes, client code must be reverified to ensure its
correctness.

/*@ predicate interval(Interval i, int l, int h) =

i.low |-> l &*& i.high |-> h &*& l <= h; @*/

class Interval {

private int low , high;

Interval(int l, int h)

//@ requires l <= h;

//@ ensures interval(this , l, h);

{

low = l; high = h;

//@ close interval(this , l, h);

}

void shift(int amount)

//@ requires interval(this , ?l, ?h);

//@ ensures interval(this , l + amount , h + amount);

{

//@ open interval(this , l, h);

low += amount; high += amount;

//@ close interval(this , l + amount , h + amount);

}

int getLow ()

//@ requires [?f]interval(this , ?l, ?h);

//@ ensures [f]interval(this , l, h) &*& result == l;

{

//@ open [f]interval(this , l, h);

return low;

//@ close [f]interval(this , l, h);

}

}

Fig. 5. An abstract specification for Interval.

6

To abstract over the permissions required by a method, permissions can
be grouped and hidden via predicates. For example, consider the predicate
interval of Figure 5. This predicate groups the permissions to access the fields
low and high, and additionally imposes the constraint that the former field
should be less than or equal to the latter. The body of the predicate is visible
only in the module defining the class Interval; outside of that module, it is
simply an opaque container of permissions. As shown in Figure 5, the specifi-
cation of Interval is made implementation-independent by phrasing the effect
of its methods in terms of the predicate interval. Modifying the internal rep-
resentation of Interval changes the meaning of the predicate interval, but
does not affect the external specification and hence does not force reverification
of client code. Just like basic permissions, predicates can be qualified with a
fraction and can be split and merged as required during the proof. For exam-
ple, the precondition of getLow requires an arbitrary fraction f of the predicate
interval.

VeriFast does not automatically fold and unfold predicate definitions (unless
the predicate is marked as precise). Instead, developers must explicitly indicate
via ghost commands where predicates must be folded and unfolded. For example,
the open ghost statement in the method shift unfolds the definition of the
predicate interval, and similarly the close statement folds the definition.

A predicate is precise if its parameters can be subdivided into in- and out-
put parameters, and the values of the input parameters uniquely determine the
values of the output parameters. In VeriFast, a predicate can be marked as pre-
cise by placing a semicolon instead of a comma between the input and output
parameters. For precise predicates, the verifier can infer certain open and close
statements. For example, the parameter i of the predicate interval can be
marked as an input parameter that uniquely determines the values of l and h

by placing a semicolon between the first and second parameter. If interval is
marked as precise in this way, the open and close statements of Figure 5 can be
omitted as VeriFast is able to infer them.

Note that predicates play the role of object invariants. For example, the
body of the predicate interval specifies that an Interval object is consistent
if low is less than or equal to high. The tool does not impose built-in rules that
guide when invariants must hold. Instead, developers must explicitly state where
invariants are expected to hold by specifying that the validity predicate holds.

5 Inductive Data Types

To allow developers to specify rich properties, VeriFast supports inductive data
types. That is, developers can specify the behavior of their imperative data
structures by summarizing their state as an instance of an inductive data type.
For example, the first line of Figure 6 defines the well-known inductive data type
list: a list is either empty or the concatenation of a head element and a tail.
This definition is generic in the type of the list elements (here t). The state of a
Stack object is summarized as an inductively defined list. That is, the predicate

7

stack defines a correspondence between a Stack object s and a mathematical
list of objects vs: stack(s, vs) denotes that s is a valid stack that contains
the objects in the mathematical list vs. The predicate stack internally uses
the recursive predicate lseg. The assertion lseg(from, to, vs) denotes that
there exists a sequence of nodes starting at from and ending in to that contains
the values vs. The constructor’s postcondition guarantees that this is a valid,
empty stack. The precondition of push requires that this is a valid stack, while
the postcondition ensures that the target is still a valid stack where o is added
to the top of the stack.

/*@ inductive list <t> = nil | cons(t, list <t>);

predicate lseg(Node from , Node to; list <Object > vs) =

from == to ?

vs == nil

:

from != null &*& from.value |-> ?v &*&

from.next |-> ?next &*& lseg(next , to, ?nvs) &*&

vs == cons(v, nvs);

predicate stack(Stack s; list <Object > vs) =

s.first |-> ?first &*& lseg(first , null , vs); @*/

class Node { Object value; Node next; ... }

class Stack {

Node first;

Stack()

//@ requires true;

//@ ensures stack(this , nil);

{

}

void push(Object o)

//@ requires stack(this , ?vs);

//@ ensures stack(this , cons(o, vs));

{

first = new Node(o, first);

}

}

Fig. 6. The class Stack specified via an inductively defined list.

8

6 Fixpoint Functions

The state of an imperative data structure can be summarized in the specification
as an instance of an inductive data type. To allow developers to specify the
effect of methods on this state, VeriFast supports fixpoint functions. A fixpoint
function is a mathematical function that operates on an inductively defined
data type. For example, consider the fixpoint functions defined in Figure 7. The
functions head, tail and length respectively return the head, tail and length
of a recursively defined list, while append concatenates two such lists.

/*@

fixpoint t head <t>(list <t> xs) {

switch (xs) {

case nil: return default_value <t>;

case cons(x, xs0): return x;

}

}

fixpoint list <t> tail <t>(list <t> xs) {

switch (xs) {

case nil: return nil;

case cons(x, xs0): return xs0;

}

}

fixpoint int length <t>(list <t> xs) {

switch (xs) {

case nil: return 0;

case cons(x, xs0): return 1 + length(xs0);

}

}

fixpoint list <t> append <t>(list <t> xs, list <t> ys) {

switch (xs) {

case nil: return ys;

case cons(x, xs0): return cons(x, append(xs0 , ys));

}

}

@*/

Fig. 7. A number of fixpoint functions.

As shown in Figure 8, the method contracts of pop and size use fixpoint
functions to describe the return value and the effect of the methods on the stack’s
state. For example, the postcondition of size states that the method’s return
value equals the length of the element list.

9

Fixpoint functions are encoded as first-order functions in the underlying the-
orem prover. The behavior of these functions is then encoded via a number of
axioms that are derived from the fixpoint’s body. To guarantee that these axioms
are consistent, we enforce that fixpoint functions terminate. That is, a fixpoint
f can call a fixpoint g if either (1) g is defined before f in the program text or
(2) the call decreases the size of an inductive parameter.

class Stack{

...

Object pop()

//@ requires stack(this , ?vs) &*& vs != nil;

/*@ ensures stack(this , tail(vs)) &*&

result == head(vs); @*/

{

Object res = first.value;

first = first.next;

return res;

}

private int size_helper(Node first)

//@ requires lseg(first , null , ?vs);

/*@ ensures lseg(first , null , vs) &*&

result == length(vs); @*/

{

//@ open lseg(first , null , vs);

if (first == null)

return 0;

else

return 1 + size_helper(first.next);

}

int size()

//@ requires stack(this , ?vs);

//@ ensures stack(this , vs) &*& result == length(vs);

{

return size_helper(this.head);

}

}

Fig. 8. The methods pop and size specified via fixpoint functions.

10

7 Lemmas

Lemma functions allow developers to prove properties about their inductive data
types, fixpoints and predicates, and allow them to use these properties when
reasoning about programs. A lemma is a method without side effects marked
lemma. The contract of a lemma function corresponds to a theorem, its body to
the proof, and a lemma function call to an application of the theorem. VeriFast
has two types of lemma functions: pure lemmas and spatial lemmas.

A lemma is pure if its contract does not contain spatial assertions (i.e. basic
permissions and predicates). The contract of a pure lemma corresponds to a
theorem that states that the precondition implies the postcondition. The func-
tion append_assoc of Figure 9 is an example of a pure lemma that states that
the fixpoint append is associative. append_assoc’s body proves associativity by
induction on xs. More specifically, the case nil of the switch statement corre-
sponds to the base case, while the case cons corresponds to the inductive step.
The recursive call in the case cons is an application of the induction hypothesis.

/*@

lemma void append_assoc <t>(list <t> xs , list <t> ys , list <t> zs)

requires true;

ensures append(append(xs , ys), zs) ==

append(xs , append(ys, zs));

{

switch(xs) {

case nil:

case cons(x0, xs0): append_assoc(xs0 , ys, zs);

}

}

lemma void lseg_merge(Node a, Node b, Node c)

requires lseg(a, b, ?vs1) &*& lseg(b, c, ?vs2) &*&

lseg(c, null , ?vs3);

ensures lseg(a, c, append(vs1 , vs2)) &*& lseg(c, null , vs3);

{

open lseg(c, null , vs3);

open lseg(a, b, vs1);

if(a != b) lseg_merge(a.next , b, c)

}

@*/

Fig. 9. A pure and a spatial lemma.

Contrary to pure lemmas, spatial lemmas can mention spatial assertions in
their method contracts. The contract of a spatial lemma corresponds to a the-
orem that states that the permissions described by the precondition are equiv-
alent to the permissions described by the postcondition. A spatial lemma does

11

not modify the values in the heap, but only rewrites the symbolic representa-
tion of the symbolic state. lseg_merge is an example of a spatial lemma. The
corresponding theorem states that a list segment from a to b and a list segment
from b to c can be merged into a single list segment from a to c, provided there
exists an additional list segment from c to null.

The body of the iterative implementation of the method size shown in Fig-
ure 10 calls lseg_merge and append_assoc to prove that the loop body preserves
the loop invariant.

class Stack {

...

int size()

//@ requires stack(this , ?vs);

//@ ensures stack(this , vs) &*& result == length(vs);

{

Node curr = first;

//@ Node first = curr;

int count = 0;

while(curr != null)

/*@ invariant lseg(first , curr , ?vs1) &*&

lseg(curr , null , ?vs2) &*&

vs == append(vs1 , vs2) &*&

count == length(vs1); @*/

{

//@ Node oldCurr = curr;

curr = curr.next;

//@ open lseg(curr , null , _);

//@ close lseg(curr , null , _);

count ++;

//@ lseg_merge(first , oldCurr , curr);

//@ append_assoc(vs1 , cons(head(vs2), nil), tail(vs2));

}

//@ open lseg(curr , curr , _);

return count;

}

}

Fig. 10. An iterative implementation of the method size. Lemma calls are needed to
prove correctness of this method.

12

8 Inheritance

A Java interface is a named group of abstract methods. For example, the interface
List of Figure 11 declares the methods add, get and size. Each non-abstract
class that implements this interface must implement these methods.

interface List {

//@ predicate valid(list <Object > vs);

void add(Object o);

//@ requires valid (?vs);

//@ ensures valid(append(vs, cons(o, nil)));

Object get(int index);

/*@ requires valid (?vs) &*& 0 <= index &&

index < length(vs); @*/

//@ ensures valid(vs) &*& result == nth(index , vs);

int size ();

//@ requires valid (?vs);

//@ ensures valid(vs) &*& result == length(vs);

}

Fig. 11. The interface List defining the instance predicate valid.

The specifications of add, get and size are written in terms of the instance
predicate valid. An instance predicate is similar to an ordinary predicate, except
that (1) it has an implicit this parameter, (2) it has multiple definitions (one
for each subclass), and (3) it is dynamically bound on the dynamic type of the
implicit argument. As each implementing class has its own fields and invariants,
each subclass can assign a different meaning to the predicate. For example, the
definition of valid in the class ArrayList of Figure 12 states that items must
point to a valid array and that size lies between zero and the length of that
array. The class LinkedList assigns a completely different meaning to valid: a
linked list is valid if first points to a sequence of nodes ending in null that
contain the values vs. Just like methods, instance predicates are dynamically
bound: the meaning of the assertion l.valid(vs) depends on the dynamic type
of l. For example, if l’s dynamic type is ArrayList, then the definition given
in the class ArrayList is used to interpret l.valid(vs). Note that instance
predicates are similar to Parkinson’s and Bierman’s predicate families [6].

The code that is executed for a method call is not selected statically, but
instead depends on the dynamic type of the target object. To guarantee that
the code that is selected during execution matches the compile-time contract
of the call, VeriFast checks that whenever a subclass implements or overrides a

13

method, the contract of the overriding and overridden method are specification
compatible [7].

class ArrayList implements List {

/*@ predicate valid(list <Object > vs) =

this.items |-> ?items &*& items != null &*&

array_slice(items , 0, items.length , ?elems) &*&

this.size |-> ?size &*& 0 <= size &*&

size <= items.length &*& vs == take(size , elems); @*/

Object [] items;

int size;

...

}

class LinkedList implements List {

/*@ predicate valid(list <Object > vs) =

this.first |-> ?first &*& lseg(first , null , vs); @*/

Node first;

...

}

Fig. 12. The classes ArrayList and LinkedList. Both classes implement the interface
List and provide a different implementation for the predicate valid.

9 Related Work

Verification of imperative programs with shared, mutable state is an active area
of research. In this section, we give a short overview of a number of related tools
and approaches.

Separation logic VeriFast reasons about programs using separation logic.
Separation logic [3,4] extends classical Hoare logic with a new connective called
separating conjunction. A separating conjunction, denoted P ∗Q, holds if both
P and Q hold for disjoint parts of the heap. The key proof rule that enables
local reasoning is the frame rule:

{P} C {Q}
{P ∗R} C {Q ∗R}

The frame rule states that C preserves R if that command does not need the
permissions described by R.

Berdine, Calcagno, and O’Hearn [5] demonstrate that a fragment of separa-
tion logic is amenable to automatic static checking by building a verifier, called

14

Smallfoot, for a small, procedural language. VeriFast and jStar [8] extend the
ideas of Berdine et al. to the Java programming language. Unlike VeriFast, jS-
tar can infer certain loop invariants (based on abstraction rules provided by
developers in a separate file).

In addition to jStar and VeriFast, Smallfoot has inspired several other tools.
For example, Heap-Hop [9] is an extension of Smallfoot targetted at proving
memory safety and deadlock freedom of concurrent programs that rely on message-
passing. Tuerk [10] has developed HOLFoot, a port of Smallfoot to HOL. He has
mechanically proven that HOLFoot is sound. HIP [11] is a variant of Smallfoot
that focuses on automatically proving size properties (in addition to shape prop-
erties). As it is hard for fully automatic tools to prove full functional correctness,
several researchers [12,13,14] have used separation logic within interactive proof
assistants.

Leino and Müller [15] and Smans, Jacobs and Piessens [16] have demonstrated
that separation logic’s key concepts, namely permissions and permission trans-
fer, can be incorporated in an automatic verifier based on first-order verification
condition generation and automated theorem proving with an SMT solver [17].
Summers and Parkinson [18] have formalized the relation between separation
logic and implicit dynamic frames. An advantage of implicit dynamic frames
compared to separation logic is that heap-dependent expressions can be used
within specifications and that developers need not provide open and close state-
ments as folding and unfolding is done automatically by the theorem prover. A
disadvantage of implicit dynamic frames - and in our experience of other, similar
approaches based on verification condition generation and automated theorem
proving - is that (1) verification can be slow, (2) it can be hard to diagnose why
verification fails and (3) automated theorem proving can be unpredictable, as
small changes to the input can cause huge differences in verification time (or
even whether the proof succeeds at all).

Dynamic Frames and Regional Logic The dynamic frames [19,20,21,22]
approach solves the frame problem by annotating methods with frame annota-
tions. More specifically, the frame annotation declares an upper bound on the set
of memory locations that can be read or written by the corresponding method.
These upper bounds can be specified using dynamic frames. A dynamic frame is
a ghost method or ghost field that returns or holds a set of memory locations.
A dynamic frame is dynamic in the sense that the set of memory locations rep-
resented by a dynamic frame can change over time. A disadvantage of dynamic
frames compared to separation logic is that developers must explicitly provide
frame annotations. These annotations must be checked by the verifier. Moreover,
- to the best of our knowledge - it is not clear how to extend dynamic frames
from sequential to concurrent programs.

Dafny [20] and VeriCool [22] are two verifiers based on dynamic frames. Both
verifiers rely on verification condition generation instead of symbolic execution.

Java Modeling Language The Java modeling language (JML) [23] is a
behavioral interface specification language for Java. An advantage of JML com-
pared to separation logic is that JML specifications can mention Java expres-

15

sions, thereby making JML easy to learn for developers and amenable to run-time
checking. Several tools use JML as their specification language. The extended
static checker for Java (ESC/Java) [24] was one of the first tools based on JML.
ESC/Java is purposely unsound; the goal of the tool is not to prove full functional
correctness, but to find common programming errors such as null dereferences
and off-by-one errors. Krakatoa [25] is a JML-based program verifier for Java
based on the Why verification platform. Just like VeriFast, Krakatoa has been
applied in the verification of Java Card programs. The Key tool [26] is a pro-
gram verifier based on dynamic logic that uses JML as a specification language.
In addition to program verifiers, the JML community has developed run-time
assertion checkers and unit test generators [27].

Other Approaches The Verifying C Compiler (VCC) [28] is a program ver-
ifier for concurrent C programs. Although the VCC programming methodology
is developed specifically for C, we believe many ideas from that methodology
can be applied in the verification of object-oriented programs.

10 Conclusion and Future Work

VeriFast is a separation logic-based program verifier for Java. In this paper, we
have informally explained the key features of this verifier.

Based on our experience with VeriFast, we identify three main areas of fu-
ture work. First of all, the basic permissions in separation logic provide either
read-only or full access. However, for some programs - in particular concurrent
programs - more flexible permissions policies are required. For example, devel-
opers should be able to define a permission that permits incrementing (but not
decrementing) a memory location. As shown by Owicki and Gries [29] and more
recently by Jacobs and Piessens [30], arbitrarily complex policies can be ex-
pressed by using ghost state and fractional permissions. However, using ghost
state does not lead to intuitive proofs. Therefore, we consider designing a more
flexible permission system a key challenge for the future. Concurrent abstract
predicates [31] form a promising direction in this area.

VeriFast requires developers to explicitly fold and unfold predicate defini-
tions. Moreover, to prove inductive properties, lemmas must be written and
called whenever the property is needed. A second important challenge to be
addressed in future work is reducing the annotation overhead by automatically
inferring open and close statements and lemma invocations.

Finally, VeriFast supports only a subset of Java. For example, generics are
not supported yet by the tool. In order for VeriFast to be applicable to large
Java programs, we must extend the supported subset of Java.

References

1. Bart Jacobs, Jan Smans, and Frank Piessens. A quick tour of the VeriFast program
verifier. In Asian Symposium on Programming Languages and Systems (APLAS),
2010.

16

2. Bart Jacobs, Jan Smans, and Frank Piessens. The VeriFast program verifier: A
tutorial. 2011.

3. John Reynolds. Separation logic: A logic for shared mutable data structures. In
Logic in Computer Science (LICS), 2002.

4. Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about pro-
grams that alter data structures. In International Workshop on Computer Science
Logic (CSL), 2001.

5. Josh Berdine, Cristiano Calcagno, and Peter O’Hearn. Symbolic execution with
separation logic. In Asian Symposium on Programming Languages (APLAS), 2005.

6. Matthew Parkinson and Gavin Bierman. Separation logic, abstraction and inheri-
tance. In Principles of Programming Languages (POPL), 2008.

7. Matthew Parkinson. Local reasoning for Java. PhD thesis, University of Cam-
bridge, 2005.

8. Dino Distefano and Matthew Parkinson. jStar: Towards practical verification
for Java. In Object-oriented Programming, Systems, Languages and Applications
(OOPSLA), 2008.

9. Jules Villard, Étienne Lozes, and Cristiano Calcagno. Proving copyless message
passing. In Asian Symposium on Programming Languages and Systems (APLAS),
2009.

10. Thomas Tuerk. A formalisation of Smallfoot in HOL. In Theorem Proving in
Higher Order Logics (TPHOLs), 2009.

11. Huu Hai Nguyen and Wei-Ngan Chin. Enhancing program verification with lem-
mas. In Computer Aided Verification (CAV), 2008.

12. Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars
Birkedal. Ynot: Reasoning with the awkward squad. In International Conference
on Functional Programming (ICFP), 2008.

13. Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle se-
mantics for concurrent separation logic. In European Symposium on Programming
(ESOP), 2008.

14. Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation
logic. In Symposium on Principles of Programming Languages (POPL), 2007.

15. K. Rustan M. Leino and Peter Müller. A basis for verifying multi-threaded pro-
grams. In European Symposium on Object-oriented Programming (ESOP), 2009.

16. Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames. In European
Conference on Object-oriented Programming (ECOOP), 2009.

17. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2008.

18. Matthew Parkinson and Alexander Summers. The relationship between separa-
tion logic and implicit dynamic frames. In European Symposium on Programming
(ESOP), 2011.

19. Ioannis Kassios. Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In Formal Methods (FM), 2006.

20. Anindya Banerjee, David Naumann, and Stan Rosenberg. Regional logic for local
reasoning about global invariants. In European Conference on Object-Oriented
Programming (ECOOP), 2008.

21. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-
ness. In International Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR), 2010.

17

22. Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. An automatic ver-
ifier for Java-like programs based on dynamic frames. In Fundamental approaches
to Software Engineering (FASE), 2008.

23. Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and
applications. International Journal on Software Tools for Technology Transfer,
7(3), 2005.

24. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Java. In Programming
Languages, Design and Implementation (PLDI), 2002.

25. Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The Krakatoa tool
for certification of Java/JavaCard programs annotated in JML. Journal of Logic
and Algebraic Programming, 58(1 – 2), 2004.

26. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of Object-
Oriented Software: The KeY Approach. Springer-Verlag, 2007.

27. Gary T. Leavens, Yoonsik Cheon, and David R. Cok. Demonstration of JML tools.
Technical report, Iowa State University, 2005.

28. Ernie Cohen, Michal Moska l, Wolfram Schulte, and Stephan Tobies. Local verifi-
cation of global invariants in concurrent programs. In Computer Aided Verification
(CAV), 2010.

29. Susan Owicki and David Gries. Verifying properties of parallel programs: an ax-
iomatic approach. Communications of the ACM, 19(5), 1976.

30. Bart Jacobs and Frank Piessens. Expressive modular fine-grained concurrency
specification. In Symposium on Principles of Programming Languages (POPL),
2011.

31. Thomas Dinsdale-Young, Mike Dodds, Phillippa Gardner, Matthew Parkinson,
and Viktor Vafeiadis. Concurrent abstract predicates. In European Conference on
Object-oriented Programming (ECOOP), 2010.

18

	Verifying Java Programs with VeriFast

